Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768497

RESUMO

The [N,N'-disalicylidene-1,2-phenylenediamine]iron(III) ([salophene]iron(III)) derivatives 1-4 with anionic axial ligands (A = Cl-, NO3-, SCN-, CH3COO-) and complexes 5 and 6 with neutral ligands (A = imidazole, 1-methylimidazole) as well as the µ-oxo dimer 7 inhibited proliferation, reduced metabolic activity, and increased mitochondrial reactive oxygen species. Ferroptosis as part of the mode of action was identified by inhibitor experiments, together with induction of lipid peroxidation and diminished mitochondrial membrane potential. No differences in activity were observed for all compounds except 4, which was slightly less active. Electrochemical analyses revealed for all compounds a fast attachment of the solvent dimethyl sulfoxide and a release of the axial ligand A. In contrast, in dichloromethane and acetonitrile, ligand exchange did not take place, as analyzed by measurements of the standard potential for the iron(III/II) redox reaction.


Assuntos
Ferroptose , Ferro , Ferro/química , Ligantes , Oxirredução
2.
Bioenerg Commun ; 2022: 17, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37081928

RESUMO

Protein kinases take the center stage in numerous signaling pathways by phosphorylating compartmentalized protein substrates for controlling cell proliferation, cell cycle and metabolism. Kinase dysfunctions have been linked to numerous human diseases such as cancer. This has led to the development of kinase inhibitors which aim to target oncogenic kinase activities. The specificity of the cancer blockers depends on the range of targeted kinases. Therefore, the question arises of how cell-type-specific off-target effects impair the specificities of cancer drugs. Blockade of kinase activities has been shown to converge on the energetic organelle, the mitochondria. In this review, we highlight examples of selected major kinases that impact mitochondrial signaling. Further, we discuss pharmacological strategies to target kinase activities linked to cancer progression and redirecting mitochondrial function. Finally, we propose that cell-based recordings of mitochondrial bioenergetic states might predict off-target or identify specific on-target effects of kinase inhibitors.

3.
Cancers (Basel) ; 14(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010911

RESUMO

Two-dimensional cell cultures are established models in research for studying and perturbing cell-type specific functions. However, many limitations apply to the cell growth in a monolayer using standard cell culture media. Although they have been used for decades, their formulations do not mimic the composition of the human cell environment. In this study, we analyzed the impact of a newly formulated human plasma-like media (HPLM) on cell proliferation, mitochondrial bioenergetics, and alterations of drug efficacies using three distinct cancer cell lines. Using high-resolution respirometry, we observed that cells grown in HPLM displayed significantly altered mitochondrial bioenergetic profiles, particularly related to mitochondrial density and mild uncoupling of respiration. Furthermore, in contrast to standard media, the growth of cells in HPLM unveiled mitochondrial dysfunction upon exposure to the FDA-approved kinase inhibitor sunitinib. This seemingly context-dependent side effect of this drug highlights that the selection of the cell culture medium influences the assessment of cancer drug sensitivities. Thus, we suggest to prioritize media with a more physiological composition for analyzing bioenergetic profiles and to take it into account for assigning drug efficacies in the cell culture model of choice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA