Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Metab Eng ; 73: 91-103, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750243

RESUMO

Current bioprocesses for production of value-added compounds are mainly based on pure cultures that are composed of rationally engineered strains of model organisms with versatile metabolic capacities. However, in the comparably well-defined environment of a bioreactor, metabolic flexibility provided by various highly abundant biosynthetic enzymes is much less required and results in suboptimal use of carbon and energy sources for compound production. In nature, non-model organisms have frequently evolved in communities where genome-reduced, auxotrophic strains cross-feed each other, suggesting that there must be a significant advantage compared to growth without cooperation. To prove this, we started to create and study synthetic communities of niche-optimized strains (CoNoS) that consists of two strains of the same species Corynebacterium glutamicum that are mutually dependent on one amino acid. We used both the wild-type and the genome-reduced C1* chassis for introducing selected amino acid auxotrophies, each based on complete deletion of all required biosynthetic genes. The best candidate strains were used to establish several stably growing CoNoS that were further characterized and optimized by metabolic modelling, microfluidic experiments and rational metabolic engineering to improve amino acid production and exchange. Finally, the engineered CoNoS consisting of an l-leucine and l-arginine auxotroph showed a specific growth rate equivalent to 83% of the wild type in monoculture, making it the fastest co-culture of two auxotrophic C. glutamicum strains to date. Overall, our results are a first promising step towards establishing improved biobased production of value-added compounds using the CoNoS approach.


Assuntos
Corynebacterium glutamicum , Aminoácidos/genética , Técnicas de Cocultura , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos
2.
Brain Topogr ; 28(6): 771-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25782980

RESUMO

With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Análise por Conglomerados , Magnetoencefalografia , Humanos , Processamento de Sinais Assistido por Computador
3.
Neuroimage ; 86: 446-60, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24161808

RESUMO

Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals originating from neural currents in the brain. Using these signals to characterize and locate brain activity is a challenging task, as evidenced by several decades of methodological contributions. MNE, whose name stems from its capability to compute cortically-constrained minimum-norm current estimates from M/EEG data, is a software package that provides comprehensive analysis tools and workflows including preprocessing, source estimation, time-frequency analysis, statistical analysis, and several methods to estimate functional connectivity between distributed brain regions. The present paper gives detailed information about the MNE package and describes typical use cases while also warning about potential caveats in analysis. The MNE package is a collaborative effort of multiple institutes striving to implement and share best methods and to facilitate distribution of analysis pipelines to advance reproducibility of research. Full documentation is available at http://martinos.org/mne.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Magnetoencefalografia/métodos , Modelos Neurológicos , Software , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Design de Software , Validação de Programas de Computador
4.
Biomed Tech (Berl) ; 63(6): 683-689, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-28820729

RESUMO

Physical head phantoms allow the assessment of source reconstruction procedures in electroencephalography and electrical stimulation profiles during transcranial electric stimulation. Volume conduction in the head is strongly influenced by the skull, which represents the main conductivity barrier. Realistic modeling of its characteristics is thus important for phantom development. In the present study, we proposed plastic clay as a material for modeling the skull in phantoms. We analyzed five clay types varying in granularity and fractions of fire clay, each with firing temperatures from 550°C to 950°C. We investigated the conductivity of standardized clay samples when immersed in a 0.9% sodium chloride solution with time-resolved four-point impedance measurements. To test the reusability of the clay model, these measurements were repeated after cleaning the samples by rinsing in deionized water for 5 h. We found time-dependent impedance changes for approximately 5 min after immersion in the solution. Thereafter, the conductivities stabilized between 0.0716 S/m and 0.0224 S/m depending on clay type and firing temperatures. The reproducibility of the measurement results proved the effectiveness of the rinsing procedure. Clay provides formability, is permeable to ions, can be adjusted in conductivity value and is thus suitable for the skull modeling in phantoms.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Crânio/fisiologia , Estimulação Elétrica , Humanos , Imagens de Fantasmas
5.
IEEE Trans Med Imaging ; 35(10): 2218-2228, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27093548

RESUMO

Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l1-norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l0.5-quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.


Assuntos
Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Magnetoencefalografia/métodos , Modelos Neurológicos , Processamento de Sinais Assistido por Computador , Algoritmos , Simulação por Computador , Potenciais Somatossensoriais Evocados/fisiologia , Humanos
6.
Front Hum Neurosci ; 10: 413, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588002

RESUMO

A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.

7.
PLoS One ; 10(4): e0121741, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25885290

RESUMO

Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.


Assuntos
Algoritmos , Eletroencefalografia , Análise de Fourier , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Razão Sinal-Ruído
8.
Front Neurosci ; 7: 267, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24431986

RESUMO

Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.

9.
Inf Process Med Imaging ; 22: 600-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21761689

RESUMO

Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While time-frequency analysis is often used in the field, it is not commonly employed in the context of the ill-posed inverse problem that maps the MEG and EEG measurements to the source space in the brain. In this work, we detail how convex structured sparsity can be exploited to achieve a principled and more accurate functional imaging approach. Importantly, time-frequency dictionaries can capture the non-stationary nature of brain signals and state-of-the-art convex optimization procedures based on proximal operators allow the derivation of a fast estimation algorithm. We compare the accuracy of our new method to recently proposed inverse solvers with help of simulations and analysis of real MEG data.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Magnetoencefalografia/métodos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA