RESUMO
Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.
Assuntos
Camundongos Knockout , Transtornos do Neurodesenvolvimento , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/genéticaRESUMO
PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genéticaRESUMO
BACKGROUND: Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research. OBJECTIVE: The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family. METHODS: Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment. RESULTS: We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved DFG motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization. CONCLUSIONS: We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Linhagem , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Doença de Parkinson/genética , Índia , Feminino , Masculino , Pessoa de Meia-Idade , Mutação com Perda de Função/genética , Adulto , Ubiquitina-Proteína Ligases/genética , Mutação/genética , Sequenciamento do Exoma , Mitofagia/genéticaRESUMO
BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.
Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genéticaRESUMO
We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.
Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto JovemRESUMO
BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.
Assuntos
Quimases , Pancreatite Crônica , Humanos , Quimases/genética , Predisposição Genética para Doença , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fatores de RiscoRESUMO
PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.
Assuntos
Ataxia Cerebelar , Atrofia Óptica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ubiquitina Tiolesterase , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Mutação com Perda de Função , Espasticidade Muscular/genética , Mutação , Atrofia Óptica/genética , Linhagem , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Ubiquitina Tiolesterase/genéticaRESUMO
BACKGROUND: Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations. OBJECTIVE: The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs. METHODS: In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments. RESULTS: We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage. CONCLUSIONS: We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Síndrome de Cockayne , Neoplasias Cutâneas , Xeroderma Pigmentoso , Adulto , Síndrome de Cockayne/complicações , Síndrome de Cockayne/genética , Reparo do DNA/genética , Humanos , Pele , Neoplasias Cutâneas/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismoRESUMO
The von Willebrand Factor A domain containing 1 protein, encoded by VWA1, is an extracellular matrix protein expressed in muscle and peripheral nerve. It interacts with collagen VI and perlecan, two proteins that are affected in hereditary neuromuscular disorders. Lack of VWA1 is known to compromise peripheral nerves in a Vwa1 knock-out mouse model. Exome sequencing led us to identify bi-allelic loss of function variants in VWA1 as the molecular cause underlying a so far genetically undefined neuromuscular disorder. We detected six different truncating variants in 15 affected individuals from six families of German, Arabic, and Roma descent. Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. Our findings establish VWA1 as a new disease gene confidently implicated in this autosomal recessive neuromyopathic condition presenting with child-/adult-onset muscle weakness as a key clinical feature.
Assuntos
Proteínas da Matriz Extracelular/genética , Doenças Neuromusculares/genética , Adolescente , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Doenças Neuromusculares/patologia , Linhagem , Sequenciamento do ExomaRESUMO
OBJECTIVES: To examine the diagnostic yield of trio exome sequencing in fetuses with multiple structural defects with no pathogenic findings in cytogenetic and microarray analyses. METHODS: We recruited 51 fetuses with two or more defects, non-immune fetal hydrops or fetal akinesia deformation syndrome|or fetal akinesia deformation sequence (FADS). Trio exome sequencing was performed on DNA from chorionic villi samples and parental blood. Detection of genomic variation and prioritization of clinically relevant variants was performed according to in-house standard operating procedures. RESULTS: Median maternal and gestational age was 32.0 years and 21.0 weeks, respectively. Forty-three (84.3%) fetuses had two or more affected organ systems. The remaining fetuses had isolated fetal hydrops or FADS. In total, the exome analysis established the genetic cause for the clinical abnormalities in 22 (43.1%, 95% CI 29.4%-57.8%) pregnancies. CONCLUSIONS: In fetuses with multiple defects, hydrops or FADS and normal standard genetic results, trio exome sequencing has the potential to identify genetic anomalies in more than 40% of cases.
Assuntos
Exoma , Hidropisia Fetal , Adulto , Feminino , Feto/diagnóstico por imagem , Humanos , Hidropisia Fetal/genética , Pais , Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodosRESUMO
We report on a 14-year old boy, his father, and his paternal uncle, all three carriers of a duplication of chromosomal region 11p15.3-p15.1. The aberration was transmitted by the grandmother, who is carrier of a balanced insertion 46,XX,ins(14;11)(q32.1;p15.3p15.1). In order to determine the precise molecular basis of this structural variant, we performed low-coverage whole genome sequencing on the boy's father. This approach allowed precise determination of the genomic breakpoints and revealed a duplication of 6.9 Mb, centromeric to the Beckwith-Wiedemann/Silver-Russell syndrome critical region in 11p15.5, that inserted in inverse orientation into 14q32.12 (according to HGVS nomenclature: NC_000014.8:g.92871000_92871001ins[NC_000011.9:g.12250642_19165928inv;T]). To our knowledge, this is the first report of a duplication of 11p15.3-p15.1 involving more than 40 genes and transmitted through two generations without apparent clinical effects.
Assuntos
Síndrome de Beckwith-Wiedemann/genética , Predisposição Genética para Doença , Síndrome de Silver-Russell/genética , Translocação Genética/genética , Adolescente , Síndrome de Beckwith-Wiedemann/patologia , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 14/genética , Genoma Humano/genética , Humanos , Masculino , Linhagem , Síndrome de Silver-Russell/patologia , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous disorder of the peripheral nervous system. Biallelic variants in SLC12A6 have been associated with autosomal-recessive hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC). We identified heterozygous de novo variants in SLC12A6 in three unrelated patients with intermediate CMT. METHODS: We evaluated the clinical reports and electrophysiological data of three patients carrying de novo variants in SLC12A6 identified by diagnostic trio exome sequencing. For functional characterisation of the identified variants, potassium influx of mutated KCC3 cotransporters was measured in Xenopus oocytes. RESULTS: We identified two different de novo missense changes (p.Arg207His and p.Tyr679Cys) in SLC12A6 in three unrelated individuals with early-onset progressive CMT. All presented with axonal/demyelinating sensorimotor neuropathy accompanied by spasticity in one patient. Cognition and brain MRI were normal. Modelling of the mutant KCC3 cotransporter in Xenopus oocytes showed a significant reduction in potassium influx for both changes. CONCLUSION: Our findings expand the genotypic and phenotypic spectrum associated with SLC12A6 variants from autosomal-recessive HMSN/ACC to dominant-acting de novo variants causing a milder clinical presentation with early-onset neuropathy.
Assuntos
Agenesia do Corpo Caloso/genética , Doença de Charcot-Marie-Tooth/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Doenças do Sistema Nervoso Periférico/genética , Simportadores/genética , Adolescente , Idade de Início , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/patologia , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Criança , Feminino , Genótipo , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico por imagem , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/patologia , FenótipoRESUMO
Our comprehensive cohort of 1100 unrelated achromatopsia (ACHM) patients comprises a considerable number of cases (~5%) harboring only a single pathogenic variant in the major ACHM gene CNGB3. We sequenced the entire CNGB3 locus in 33 of these patients to find a second variant which eventually explained the patients' phenotype. Forty-seven intronic CNGB3 variants were identified in 28 subjects after a filtering step based on frequency and the exclusion of variants found in cis with pathogenic alleles. In a second step, in silico prediction tools were used to filter out those variants with little odds of being deleterious. This left three variants that were analyzed using heterologous splicing assays. Variant c.1663-1205G>A, found in 14 subjects, and variant c.1663-2137C>T, found in two subjects, were indeed shown to exert a splicing defect by causing pseudoexon insertion into the transcript. Subsequent screening of further unsolved CNGB3 subjects identified four additional cases harboring the c.1663-1205G>A variant which makes it the eighth most frequent CNGB3 variant in our cohort. Compound heterozygosity could be validated in ten cases. Our study demonstrates that whole gene sequencing can be a powerful approach to identify the second pathogenic allele in patients apparently harboring only one disease-causing variant.
Assuntos
Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Éxons , Variação Genética , Íntrons , Pseudogenes , Alelos , Substituição de Aminoácidos , Sequência de Bases , Biologia Computacional/métodos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Mutação , Fenótipo , Splicing de RNARESUMO
We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.
Assuntos
Deficiência Intelectual/genética , Linfocinas/genética , Mutação/genética , Anormalidades Múltiplas/genética , Adolescente , Animais , Criança , Éxons/genética , Humanos , Masculino , Fenótipo , Isoformas de Proteínas/genética , Síndrome , Fatores de Transcrição/genéticaRESUMO
Bone morphogenetic protein 2 (BMP2) in chromosomal region 20p12 belongs to a gene superfamily encoding TGF-ß-signaling proteins involved in bone and cartilage biology. Monoallelic deletions of 20p12 are variably associated with cleft palate, short stature, and developmental delay. Here, we report a cranioskeletal phenotype due to monoallelic truncating and frameshift BMP2 variants and deletions in 12 individuals from eight unrelated families that share features of short stature, a recognizable craniofacial gestalt, skeletal anomalies, and congenital heart disease. De novo occurrence and autosomal-dominant inheritance of variants, including paternal mosaicism in two affected sisters who inherited a BMP2 splice-altering variant, were observed across all reported families. Additionally, we observed similarity to the human phenotype of short stature and skeletal anomalies in a heterozygous Bmp2-knockout mouse model, suggesting that haploinsufficiency of BMP2 could be the primary phenotypic determinant in individuals with predicted truncating variants and deletions encompassing BMP2. These findings demonstrate the important role of BMP2 in human craniofacial, skeletal, and cardiac development and confirm that individuals heterozygous for BMP2 truncating sequence variants or deletions display a consistent distinct phenotype characterized by short stature and skeletal and cardiac anomalies without neurological deficits.
Assuntos
Proteína Morfogenética Óssea 2/genética , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Nanismo/genética , Haploinsuficiência/genética , Cardiopatias Congênitas/genética , Animais , Osso e Ossos/embriologia , Criança , Pré-Escolar , Cromossomos Humanos Par 20/genética , Fissura Palatina/genética , Modelos Animais de Doenças , Feminino , Coração/embriologia , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Transformador beta/genéticaRESUMO
We recruited 103 families from Jordan with neurodevelopmental disorders (NDD) and patterns of inheritance mostly suggestive of autosomal recessive inheritance. In each family, we investigated at least one affected individual using exome sequencing and an in-house diagnostic variant interpretation pipeline including a search for copy number variation. This approach led us to identify the likely molecular defect in established disease genes in 37 families. We could identify 25 pathogenic nonsense and 11 missense variants as well as 3 pathogenic copy number variants and 1 repeat expansion. Notably, 11 of the disease-causal variants occurred de novo. In addition, we prioritized a homozygous frameshift variant in PUS3 in two sisters with intellectual disability. To our knowledge, PUS3 has been postulated only recently as a candidate disease gene for intellectual disability in a single family with three affected siblings. Our findings provide additional evidence to establish loss of PUS3 function as a cause of intellectual disability.
Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Deficiência Intelectual/patologia , Jordânia/epidemiologia , Masculino , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Irmãos , Sequenciamento do ExomaRESUMO
PURPOSE: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS: Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS: The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION: These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.
Assuntos
Doenças Musculares/genética , Fator de Transcrição PAX7/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Mioblastos , Fator de Transcrição PAX7/metabolismo , Linhagem , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodosRESUMO
BACKGROUND: Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. METHODS: We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. RESULTS: Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. CONCLUSIONS: To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.
Assuntos
Proteína BRCA1/genética , Biomarcadores Tumorais , Neoplasias da Mama/genética , Reparo do DNA , Predisposição Genética para Doença , Deleção de Sequência , Adulto , Idade de Início , Idoso , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Loci Gênicos , Alemanha/epidemiologia , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Vigilância da População , Medição de Risco , Fatores de RiscoRESUMO
BACKGROUND: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. OBJECTIVES: To resolve the role of LRRK2 in the Indian population. METHODS: We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. RESULTS: We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. CONCLUSIONS: Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. © 2018 International Parkinson and Movement Disorder Society.