Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7988): 842-852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853127

RESUMO

Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.


Assuntos
Substâncias Macromoleculares , Proteínas , Solventes , Termodinâmica , Água , Morte Celular , Citosol/química , Citosol/metabolismo , Homeostase , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Concentração Osmolar , Pressão , Proteínas/química , Proteínas/metabolismo , Solventes/química , Solventes/metabolismo , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
2.
EMBO J ; 41(1): e108883, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842284

RESUMO

The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Proteostase , Animais , Criptocromos/deficiência , Transporte de Íons , Camundongos , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes , Estresse Fisiológico , Fatores de Tempo
4.
PLoS Biol ; 15(8): e2001992, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771465

RESUMO

Mature human B cells infected by Epstein-Barr virus (EBV) become activated, grow, and proliferate. If the cells are infected ex vivo, they are transformed into continuously proliferating lymphoblastoid cell lines (LCLs) that carry EBV DNA as extra-chromosomal episomes, express 9 latency-associated EBV proteins, and phenotypically resemble antigen-activated B-blasts. In vivo similar B-blasts can differentiate to become memory B cells (MBC), in which EBV persistence is established. Three related latency-associated viral proteins EBNA3A, EBNA3B, and EBNA3C are transcription factors that regulate a multitude of cellular genes. EBNA3B is not necessary to establish LCLs, but EBNA3A and EBNA3C are required to sustain proliferation, in part, by repressing the expression of tumour suppressor genes. Here we show, using EBV-recombinants in which both EBNA3A and EBNA3C can be conditionally inactivated or using virus completely lacking the EBNA3 gene locus, that-after a phase of rapid proliferation-infected primary B cells express elevated levels of factors associated with plasma cell (PC) differentiation. These include the cyclin-dependent kinase inhibitor (CDKI) p18INK4c, the master transcriptional regulator of PC differentiation B lymphocyte-induced maturation protein-1 (BLIMP-1), and the cell surface antigens CD38 and CD138/Syndecan-1. Chromatin immunoprecipitation sequencing (ChIP-seq) and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) indicate that in LCLs inhibition of CDKN2C (p18INK4c) and PRDM1 (BLIMP-1) transcription results from direct binding of EBNA3A and EBNA3C to regulatory elements at these loci, producing stable reprogramming. Consistent with the binding of EBNA3A and/or EBNA3C leading to irreversible epigenetic changes, cells become committed to a B-blast fate <12 days post-infection and are unable to de-repress p18INK4c or BLIMP-1-in either newly infected cells or conditional LCLs-by inactivating EBNA3A and EBNA3C. In vitro, about 20 days after infection with EBV lacking functional EBNA3A and EBNA3C, cells develop a PC-like phenotype. Together, these data suggest that EBNA3A and EBNA3C have evolved to prevent differentiation to PCs after infection by EBV, thus favouring long-term latency in MBC and asymptomatic persistence.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Proteínas Virais/fisiologia , Latência Viral , Linfócitos B/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Código das Histonas , Humanos , Imunoglobulinas/metabolismo , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Repressoras/metabolismo
5.
EMBO Mol Med ; 15(12): e17932, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970627

RESUMO

Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Aerossóis e Gotículas Respiratórios , COVID-19/prevenção & controle , Propilenoglicóis , Mamíferos
7.
Pathogens ; 7(1)2018 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-29562595

RESUMO

The Epstein-Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein-Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in vitro B cell transformation and EBV persistence in vivo. Despite structural and sequence similarities, and evidence of substantial cooperative activity between the EBNA3 proteins, they perform quite different, often opposing functions. Both EBNA3A and EBNA3C are involved in the repression of important tumour suppressive pathways and are considered oncogenic. In contrast, EBNA3B exhibits tumour suppressive functions. This review focuses on how the EBNA3 proteins achieve the delicate balance required to support EBV persistence and latency, with emphasis on the contribution of the Allday laboratory to the field of EBNA3 biology.

8.
Cell Host Microbe ; 22(1): 61-73.e7, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704654

RESUMO

The human tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) establish persistent infections in B cells. KSHV is linked to primary effusion lymphoma (PEL), and 90% of PELs also contain EBV. Studies on persistent KSHV infection in vivo and the role of EBV co-infection in PEL development have been hampered by the absence of small animal models. We developed mice reconstituted with human immune system components as a model for KSHV infection and find that EBV/KSHV dual infection enhanced KSHV persistence and tumorigenesis. Dual-infected cells displayed a plasma cell-like gene expression pattern similar to PELs. KSHV persisted in EBV-transformed B cells and was associated with lytic EBV gene expression, resulting in increased tumor formation. Evidence of elevated lytic EBV replication was also found in EBV/KSHV dually infected lymphoproliferative disorders in humans. Our data suggest that KSHV augments EBV-associated tumorigenesis via stimulation of lytic EBV replication.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/patogenicidade , Neoplasias/virologia , Animais , Linfócitos B/virologia , Linhagem Celular Tumoral , Citocinas/sangue , DNA Viral/análise , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Genes Virais/genética , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Efusão Primária/etiologia , Linfoma de Efusão Primária/virologia , Camundongos , Baço/patologia , Baço/virologia , Taxa de Sobrevida , Replicação Viral
9.
J Exp Med ; 213(6): 921-8, 2016 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-27217538

RESUMO

Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma.


Assuntos
Linfoma de Burkitt/imunologia , Citidina Desaminase/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Rearranjo Gênico do Linfócito B/imunologia , Herpesvirus Humano 4/imunologia , Proteínas de Neoplasias/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Linfoma de Burkitt/genética , Linhagem Celular , Citidina Desaminase/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Rearranjo Gênico do Linfócito B/genética , Herpesvirus Humano 4/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Elementos de Resposta/imunologia , Hipermutação Somática de Imunoglobulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA