Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 50, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707771

RESUMO

BACKGROUND: The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. RESULTS: Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). CONCLUSIONS: The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.


Assuntos
Genoma , Seleção Genética , Ovinos/genética , Animais , Tibet , Sequenciamento Completo do Genoma , Variação Genética , Polimorfismo de Nucleotídeo Único
2.
BMC Genomics ; 24(1): 555, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726692

RESUMO

BACKGROUND: Copy number variation (CNV) is an important source of structural variation in the mammalian genome. CNV assays present a new method to explore the genomic diversity of environmental adaptations in animals and plants and genes associated with complex traits. In this study, the genome-wide CNV distribution characteristics of 20 Tibetan sheep from two breeds (10 Oula sheep and 10 Panou sheep) were analysed using whole-genome resequencing to investigate the variation in the genomic structure of Tibetan sheep during breeding. RESULTS: CNVs were detected using CNVnator, and the overlapping regions of CNVs between individual sheep were combined. Among them, a total of 60,429 CNV events were detected between the indigenous sheep breed (Oula) and the synthetic sheep breed (Panou). After merging the overlapping CNVs, 4927 CNV regions (CNVRs) were finally obtained. Of these, 4559 CNVRs were shared by two breeds, and there were 368 differential CNVRs. Deletion events have a higher percentage of occurrences than duplication events. Functional enrichment analysis showed that the shared CNVRs were significantly enriched in 163 GO terms and 62 KEGG pathways, which were mainly associated with organ development, neural regulation, immune regulation, digestion and metabolism. In addition, 140 QTLs overlapped with some of the CNVRs at more than 1 kb, such as average daily gain QTL, body weight QTL, and total lambs born QTL. Many of the CNV-overlapping genes such as PPP3CA, SSTR1 and FASN, overlap with the average daily weight gain and carcass weight QTL regions. Moreover, VST analysis showed that XIRP2, ABCB1, CA1, ASPA and EEF2 differed significantly between the synthetic breed and local sheep breed. The duplication of the ABCB1 gene may be closely related to adaptation to the plateau environment in Panou sheep, which deserves further study. Additionally, cluster analysis, based on all individuals, showed that the CNV clustering could be divided into two origins, indicating that some Tibetan sheep CNVs are likely to arise independently in different populations and contribute to population differences. CONCLUSIONS: Collectively, we demonstrated the genome-wide distribution characteristics of CNVs in Panou sheep by whole genome resequencing. The results provides a valuable genetic variation resource and help to understand the genetic characteristics of Tibetan sheep. This study also provides useful information for the improvement and breeding of Tibetan sheep in the future.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Animais , Ovinos/genética , Tibet , Análise de Sequência de DNA , Locos de Características Quantitativas , Mamíferos
3.
Anim Biotechnol ; 34(7): 2900-2909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169054

RESUMO

Steroid metabolism is a fundament to testicular development and function. The cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) is a key rate-limiting enzyme for catalyzing the conversion of cholesterol to pregnenolone. However, despite its importance, what expression and roles of CYP11A1 possesses and how it regulates the testicular development and spermatogenesis in Tibetan sheep remains largely unknown. Based on this, we evaluated the expression and localization patterns of CYP11A1 in testes and epididymides of Tibetan sheep at three developmental stages (three-month-old, pre-puberty; one-year-old, sexual maturity and three-year-old, adult) by quantitative real-time PCR (qPCR), western blot and immunofluorescence. The results showed that CYP11A1 mRNA and protein were expressed in testes and epididymides throughout the development stages and obviously more intense in one- and three-year-old groups than three-month-old group (except for the caput epididymidis). Immunofluorescence assay showed that the CYP11A1 protein was mainly located in Leydig cells and epididymal epithelial cells. In addition, positive signals of CYP11A1 protein were observed in germ cells, epididymal connective tissue and sperms stored in the epididymal lumen. Collectively, these results suggested that the CYP11A1 gene might be mainly involved in regulating spermatogenesis and androgen synthesis in developmental Tibetan sheep testis and epididymis.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Carneiro Doméstico , Ovinos/genética , Masculino , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Tibet , Testículo/metabolismo , Esteroides/metabolismo
4.
Theriogenology ; 197: 116-126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502589

RESUMO

In mammals, the testis is the organ with the highest transcriptional activity. After gene transcription, translation, and post-translational protein modification, the transcriptional results are finally presented at the metabolic level. Metabolites not only essential for cell signaling and energy transfer, but also directly influenced by the physiological and pathological changes in tissues and accurately reflect the physiological changes. The fact that the testes are oxygen-deprived organs can explain why Sertoli cells and germ cells may use distinctive metabolic pathways to obtain energy in their different stages of development. Therefore, studying metabolic changes during testis development can better elucidate metabolic profile of the testis, which is essential to revealing characteristic metabolic pathways. The present study applied a widely targeted UPLC-MS/MS-based metabolomics approach with large-scale detection, identification and quantification to investigate the widespread metabolic changes during Tibetan sheep testis development. Firstly, a total of 847 metabolites were detected in the sheep testis, and their changes along with the three testis-development stages were further investigated. The results indicated that those metabolites were clustered into amino acids and their derivatives, carbohydrates and their derivatives, organic acids and their derivatives, benzene and substituted derivatives, alcohols and amines, lipids, nucleotides and their derivatives, bile acids, coenzymes and vitamins, hormones and hormone-related compounds, etc. Among them, the most abundant metabolites in the testis were amino acids and lipid metabolites. The results showed that most of the lipids, carbohydrates with their derivatives, as well as alcohol and amines metabolites were high in sexually immature sheep while organic acids, amino acids and nucleotides showed a continuously increasing trend along with testis development stages. Among them, the content of metabolites with antioxidant effects increased along with testis development, while those related with energy synthesis was downregulated with age. Further correlation analyses of each metabolite-metabolite pair emphasized the cross talk between differential metabolisms across testis development, suggesting a significant correlation between lipids and other metabolites. Finally, based on KEGG pathway analysis, we found that the metabolic pathways in Tibetan sheep testis development were mainly clustered into energy metabolism, gonadal development, and anti-oxidative stress. Reactive oxygen species (ROS) are by-products of normal cellular metabolism and are inevitable during testicular energy metabolism. Thus, the anti-oxidative stress function is a key process in maintaining the normal physiological function of testis. These results contributed to a broader view of the testis metabolome and a comprehensive analysis on metabolomic variation among different testis-development stages, providing a theoretical basis for us to understand the sheep testis metabolic mechanism.


Assuntos
Carneiro Doméstico , Testículo , Masculino , Animais , Ovinos , Testículo/metabolismo , Tibet , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Metaboloma , Aminoácidos/metabolismo , Hormônios/metabolismo , Carboidratos , Lipídeos , Aminas/metabolismo , Nucleotídeos/metabolismo
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440761

RESUMO

This study aimed to determine the regulatory mechanism of bone morphogenetic protein 4 (BMP4) gene in the testes of Tibetan sheep and its role in the blood-testis barrier (BTB). First, we cloned BMP4 gene for bioinformatics analysis, and detected the mRNA and protein expression levels of BMP4 in the testes of Tibetan sheep pre-puberty (3-mo-old), during sexual maturity (1-yr-old), and in adulthood (3-yr-old) by qRT-PCR and Western blot. In addition, the subcellular localization of BMP4 was analyzed by immunohistochemical staining. Next, BMP4 overexpression and silencing vectors were constructed and transfected into primary Sertoli cells (SCs) to promote and inhibit the proliferation of BMP4, respectively. Then, CCK-8 was used to detect the proliferation effect of SCs. The expression of BMP4 and downstream genes, pathway receptors, tight junction-related proteins, and cell proliferation and apoptosis-related genes in SCs were studied using qRT-PCR and Western blot. The results revealed that the relative expression of BMP4 mRNA and protein in testicular tissues of 1Y group and 3Y group was dramatically higher than that of 3M group (P < 0.01), and BMP4 protein is mainly located in SCs and Leydig cells at different development stages. The CDS region of the Tibetan sheep BMP4 gene was 1,229 bp. CCK-8 results demonstrated that the proliferation rate of BMP4 was significantly increased in the overexpression group (pc-DNA-3.1(+)-BMP4; P < 0.05). In addition, the mRNA and protein expressions of SMAD5, BMPR1A, and BMPR1B and tight junction-related proteins Claudin11, Occludin, and ZO1 were significantly increased (P < 0.05). The mRNA expression of cell proliferation-related gene Bcl2 was significantly enhanced (P < 0.05), and the expression of GDNF was enhanced (P > 0.05). The mRNA expression of apoptosis-related genes Caspase3 and Bax decreased significantly (P < 0.05), while the mRNA expression of cell cycle-related genes CyclinA2 and CDK2 increased significantly (P < 0.05). It is worth noting that the opposite results were observed after transfection with si-BMP4. In summary, what should be clear from the results reported here is that BMP4 affects testicular development by regulating the Sertoli cells and BTB, thereby modulating the spermatogenesis of Tibetan sheep.


The fertility of male Tibetan sheep is mainly affected by testicular development and spermatogenesis. In these processes, Sertoli cells (SCs) play a central role and are regulated by a variety of genes and factors. BMP4 is mainly distributed in Sertoli cells, and its expression level increases with age. Overexpression of the BMP4 gene in Tibetan sheep testis SCs revealed elevated expression of BMP4 protein and its downstream genes SMAD5, pathway receptor proteins BMPR1A and BMPR1B; followed by elevated expression levels of cell proliferation-related genes and decreased expression levels of apoptosis-related genes. Meanwhile, the expression of tight junction proteins was also elevated. These results indicate that BMP4 affects testicular development by regulating the Sertoli cells and blood­testis barrier, thereby affecting the spermatogenesis of Tibetan sheep.


Assuntos
Proteína Morfogenética Óssea 4 , Células de Sertoli , Ovinos , Animais , Masculino , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , RNA Mensageiro/metabolismo , Células de Sertoli/metabolismo , Ovinos/genética , Ovinos/metabolismo , Espermatogênese , Tibet
6.
Animals (Basel) ; 13(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174590

RESUMO

While traveling through the epididymis, immature sheep spermatozoa undergo a sequence of processes that ultimately give them the capacity to swim and fertilize an egg. Different gene expression patterns may be found in the epididymal caput, corpus, and cauda, conferring variant or unique biological roles during epididymis development and sperm maturation. To search for candidate genes associated with ovine sperm maturation and assess their possible modulating mechanisms, we characterized gene expression in each epididymal segment derived from pre- and post-pubertal Tibetan sheep by RNA sequencing. Compared with pre-puberty, 7730 (3724 upregulated and 4006 downregulated), 7516 (3909 upregulated and 3607 downregulated), and 7586 (4115 elevated and 3471 downregulated) genes were found to be differentially expressed in the post-pubertal caput, corpus, and cauda epididymis, respectively, and real-time quantitative PCR verified the validity of the gathered expression patterns. Based on their functional annotations, most differential genes were assigned to the biological processes and pathways associated with cellular proliferation, differentiation, immune response, or metabolic activities. As for the post-pubertal epididymis, 2801, 197, and 186 genes were specifically expressed in the caput, corpus, and cauda, respectively. Functional annotation revealed that they were mainly enriched to various distinct biological processes associated with reproduction (including the caput binding of sperm to the zona pellucida; fertilization in the caput and corpus; and meiosis in the caput and cauda) and development (such as cell differentiation and developmental maturation in the caput; cell proliferation and metabolism in the corpus; and regulation of tube size and cell division/cell cycle in the cauda). Additionally, we focused on the identification of genes implicated in immunity and sperm maturation, and subsequent functional enrichment analysis revealed that immune-related genes mainly participated in the biological processes or pathways associated with the immune barrier (such as JAM3 and ITGA4/6/9) and immunosuppression (such as TGFB2, TGFBR1, TGFBR2, and SMAD3), thus protecting auto-immunogenic spermatozoa. Additionally, sperm maturation was mostly controlled by genes linked with cellular processes, including cell growth, proliferation, division, migration, morphogenesis, and junction. Altogether, these results suggest that most genes were differentially expressed in developmental epididymal regions to contribute to microenvironment development and sperm maturation. These findings help us better understand the epididymal biology, including sperm maturation pathways and functional differences between the epididymal regions in Tibetan sheep and other sheep breeds.

7.
Front Microbiol ; 14: 1305772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107864

RESUMO

This study delves into the impact of yeast culture (YC) on rumen epithelial development, microbiota, and metabolome, with the aim of investigating YC's mechanism in regulating rumen fermentation. Thirty male lambs of Hu sheep with similar age and body weight were selected and randomly divided into three groups with 10 lambs in each group. Lambs were fed a total mixed ration [TMR; rough: concentrate (R:C) ratio ≈ 30:70] to meet their nutritional needs. The experiment adopted completely randomized design (CRD). The control group (CON) was fed the basal diet with high concentrate, to which 20 g/d of YC was added in the low dose YC group (LYC) and 40 g/d of YC in the high dose YC group (HYC). The pretrial period was 14 days, and the experimental trial period was 60 days. At the end of a 60-day trial, ruminal epithelial tissues were collected for histomorphological analysis, and rumen microorganisms were analyzed by 16S rDNA sequencing and rumen metabolites by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics techniques. The results showed that YC improved rumen papilla development and increased rumen papilla length (p < 0.05), while decreased cuticle thickness (p < 0.05). The 16S rDNA sequencing results showed that YC reduced the relative abundance of Prevotella_1 (p < 0.05), while significantly increased the relative abundance of Ruminococcaceae_UCG-005, uncultured_bacterium_f_Lachnospiraceae, and Ruminococcus_1 genus (p < 0.05). Metabolomics analysis showed that YC changed the abundance of metabolites related to amino acid metabolism, lipid metabolism and vitamin metabolism pathways in the rumen. In summary, YC might maintain rumen health under high-concentrate diet conditions by changing rumen microbiota structure and fermentation patterns, thereby affecting rumen metabolic profiles and repairing rumen epithelial injury.

8.
Front Microbiol ; 13: 851567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711780

RESUMO

The rumen microbiota plays a key role in the utilization of plant materials by ruminants, yet little is known about the key taxa and their genetic functions of the rumen sub-environment involved in the ruminal degradation process. Understanding the differences in the composition and function of ruminal microbiota in the liquid-associated (LA) and solid-associated (SA) systems is needed to further study and regulate rumen function and health. In this study, rumen contents of nine sheep were collected to separate LA and SA systems with elution and centrifugal precipitation. Metagenome sequencing was used to investigate the differences in microbial composition and genetic functions of LA and SA systems, with special emphasis on their degradational potential toward carbohydrates. Results showed that the dominant species composition was similar between the two systems, but SA microorganisms had a higher relative abundance than LA microorganisms in all taxa. The concentration of fiber-degrading bacteria, such as Ruminococcus, Treponema, and Fibrobacter, was higher and Prevotella was lower in the SA vs. LA system. Additionally, SA microorganisms dominated in cellulose degradation, while LA microorganisms were more important in starch utilization based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)'s functional categories and Carbohydrate-Active Enzymes (CAZymes). In general, SA microorganisms are more abundant and important in metabolic functions than LA, such as carbohydrate and amino acid metabolisms. In summary, the key differential biomarkers between LA and SA systems were Prevotella, Ruminococcus, Treponema, and Fibrobacter. Ruminal microbes degraded carbohydrates synergistically with SA, thus, more focusing on cellulose and hemicellulose, while LA is more important to starch.

9.
Front Vet Sci ; 9: 992877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213420

RESUMO

Spermatogenesis is a complex process involving a variety of intercellular interactions and precise regulation of gene expression. Spermatogenesis is sustained by a foundational Spermatogonial stem cells (SSCs) and in mammalian testis. Sertoli cells (SCs) are the major component of SSC niche. Sertoli cells provide structural support and supply energy substrate for developing germ cells. Phosphoglycerate mutase 1 (Pgam1) is a key enzyme in the glycolytic metabolism and our previous work showed that Pgam1 is expressed in SCs. In the present study, hypothesized that Pgam1-depedent glycolysis in SCs plays a functional role in regulating SSCs fate decisions. A co-culture system of murine SCs and primary spermatogonia was constructed to investigate the effects of Pgam1 knockdown or overexpression on SSCs proliferation and differentiation. Transcriptome results indicated that overexpression and knockdown of Pgam1 in SCs resulted in up-regulation of 458 genes (117 down-regulated, 341 up-regulated) and down-regulation of 409 genes (110 down-regulated, 299 up-regulated), respectively. Further analysis of these DEGs revealed that GDNF, FGF2 and other genes that serve key roles in SSCs niche maintenance were regulated by Pgam1. The metabolome results showed that a total of 11 and 16 differential metabolites were identified in the Pgam1 gene overexpression and knockdown respectively. Further screening of these metabolites indicated that Sertoli cell derived glutamate, glutamine, threonine, leucine, alanine, lysine, serine, succinate, fumarate, phosphoenolpyruvate, ATP, ADP, and AMP have potential roles in regulating SSCs proliferation and differentiation. In summary, this study established a SCs-SSCs co-culture system and identified a list of genes and small metabolic molecules that affect the proliferation and differentiation of SSCs. This study provides additional insights into the regulatory mechanisms underlying interactions between SCs and SSCs during mammalian spermatogenesis.

10.
Animals (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428448

RESUMO

Yeast products (YP) are commonly used as rumen regulators, but their mechanisms of action are still unclear. Based on our previous studies, we questioned whether yeast products would have an impact on rumen solid-associated (SA) and liquid-associated (LA) microorganisms and alter rumen fermentation patterns. Thirty 3-month-old male sheep weighing 19.27 ± 0.45 kg were selected and randomized into three groups for 60 days: (1) basal diet group (CON group), (2) basal diet add 20 g YP per day (low YP, LYP group) and (3) basal diet add 40 g YP per day (high YP, HYP group). The results demonstrated that the addition of YP increased rumen cellulase activity, butyrate and total volatile fatty acid (TVFA) concentrations (p < 0.05), while it decreased rumen amylase activity and abnormal metabolites, such as lactate, lipopolysaccharides (LPS) and histamine (HIS) (p < 0.05). Metagenomic analysis of rumen microorganisms in three groups revealed that YP mainly influenced the microbial profiles of the SA system. YP increased the relative abundance of R. flavefaciens and decreased methanogens in the SA system (p < 0.05). With the addition of YP, the abundance of only a few lactate-producing bacteria increased in the SA system, including Streptococcus and Lactobacillus (p < 0.05). However, almost all lactate-utilizing bacteria increased in the LA system, including Megasphaera, Selenomonas, Fusobacterium and Veillonella (p < 0.05). In addition, YP increased the abundance of certain GHs family members, including GH43 and GH98 (p < 0.05), but decreased the abundance of some KEGG metabolic pathways involved in starch and sucrose metabolism, biosynthesis of antibiotics and purine metabolism, among others. In conclusion, the addition of YP to high-concentrate diets can change the abundance of major functional microbiota in the rumen, especially in the solid fraction, which in turn affects rumen fermentation patterns and improves rumen digestibility.

11.
PLoS One ; 17(9): e0270364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137140

RESUMO

Glycolysis in Sertoli cells (SCs) can provide energy substrates for the development of spermatogenic cells. Triose phosphate isomerase 1 (TPI1) is one of the key catalytic enzymes involved in glycolysis. However, the biological function of TPI1 in SCs and its role in glycolytic metabolic pathways are poorly understood. On the basis of a previous research, we isolated primary SCs from Tibetan sheep, and overexpressed TPI1 gene to determine its effect on the proliferation, glycolysis, and apoptosis of SCs. Secondly, we investigated the relationship between TPI1 and miR-1285-3p, and whether miR-1285-3p regulates the proliferation and apoptosis of SCs, and participates in glycolysis by targeting TPI1. Results showed that overexpression of TPI1 increased the proliferation rate and decreased apoptosis of SCs. In addition, overexpression of TPI1 altered glycolysis and metabolism signaling pathways and significantly increased amount of the final product lactic acid. Further analysis showed that miR-1285-3p inhibited TPI1 by directly targeting its 3'untranslated region. Overexpression of miR-1285-3p suppressed the proliferation of SCs, and this effect was partially reversed by restoration of TPI1 expression. In summary, this study shows that the miR-1285-3p/TPI1 axis regulates glycolysis in SCs. These findings add to our understanding on the regulation of spermatogenesis in sheep and other mammals.


Assuntos
MicroRNAs , Células de Sertoli , Animais , Proliferação de Células , Glicólise/genética , Ácido Láctico/metabolismo , Masculino , Mamíferos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células de Sertoli/metabolismo , Ovinos/genética , Transdução de Sinais , Tibet , Triose-Fosfato Isomerase/genética , Regiões não Traduzidas
12.
Front Vet Sci ; 9: 923789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909681

RESUMO

Testis has an indispensable function in male reproduction of domestic animals. Tibetan sheep (Ovis aries) is a locally adapted breed of sheep raised in the Qinghai-Tibet Plateau, with outsized roles in providing the livelihood for millions of residents. Nevertheless, less is known on how protein expression and their functional roles in developmental testes of such breed limit their use in breeding efforts. In this study, we obtained comprehensive protein profiles from testes of Tibetan sheep at three developmental stages (including pre-puberty, post-puberty, and adulthood) using data-independent acquisition-based proteomic strategy to quantitatively identify the differentially abundant proteins (DAPs) associated with testicular development and function and to unravel the molecular basis of spermatogenesis. A total of 6,221 proteins were differentially expressed in an age-dependent manner. The reliability of the gene expression abundance was corroborated by quantitative PCR and targeted parallel reaction monitoring. These DAPs were significantly enriched to biological processes concerning spermatid development and sperm deformation, mitosis, glycolytic process, cell-cell/extracellular matrix (ECM) junctions, cell proliferation, apoptosis, and migration and to the pathways including, developmental process and sexual reproduction-related (such as VEGF, estrogen, insulin, GnRH, Hippo, PI3K-Akt, mTOR, MAPK, and AMPK), and testicular cell events-related pathways (such as tight/gap/adherens junctions, ECM-receptor interaction, regulation of actin cytoskeleton, glycolysis, cell cycle, and meiosis). Based on these bioinformatics analysis, we constructed four protein-protein interaction network, among which the proteins are involved in mitosis, meiosis, spermiogenesis, and testicular microenvironment, respectively. Altogether, these bioinformatics-based sequencing results suggest that many protein-coding genes were expressed in a development-dependent manner in Tibetan sheep testes to contribute to the testicular cell development and their surrounding microenvironment remodeling at various stages of spermatogenesis. These findings have important implications for further understanding of the mechanisms underlying spermatogenesis in sheep and even other plateau-adapted animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA