RESUMO
Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.
Assuntos
Brassica napus , Plasmodioforídeos , Microscopia Crioeletrônica , Chumbo , Brassica napus/genética , Plasmodioforídeos/fisiologia , Canais Iônicos , Doenças das PlantasRESUMO
Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Resistência à Doença/imunologia , Imunidade Vegetal , Transdução de Sinais , Animais , Morte Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Ácido Glutâmico/metabolismo , Bicamadas Lipídicas/metabolismo , Oócitos/metabolismo , Células Vegetais/metabolismo , Multimerização Proteica , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imagem Individual de Molécula , Vacúolos/metabolismo , XenopusRESUMO
Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas , Transdução de Sinais , Fosforilação , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Domínios Proteicos , MutaçãoRESUMO
ABSTRACT: Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is a lethal syndrome because of persistent EBV infection. When diagnosed as CAEBV, EBV infection was observed in multiple hematopoietic lineages, but the etiology of CAEBV is still elusive. Bone marrow and peripheral cells derived from 5 patients with CAEBV, 1 patient with EBV-associated hemophagocytic lymphohistiocytosis, and 2 healthy controls were analyzed. Multiple assays were applied to identify and characterize EBV-infected cells, including quantitative polymerase chain reaction, PrimeFlow, and single-cell RNA-sequencing (scRNA-seq). Based on scRNA-seq data, alterations in gene expression of particular cell types were analyzed between patients with CAEBV and controls, and between infected and uninfected cells. One patient with CAEBV was treated with allogeneic hematopoietic stem cell transplantation (HSCT), and the samples derived from this patient were analyzed again 6 months after HSCT. EBV infected the full spectrum of the hematopoietic system including both lymphoid and myeloid lineages, as well as the hematopoietic stem cells (HSCs) of the patients with CAEBV. EBV-infected HSCs exhibited a higher differentiation rate toward downstream lineages, and the EBV infection had an impact on both the innate and adaptive immunity, resulting in inflammatory symptoms. EBV-infected cells were thoroughly removed from the hematopoietic system after HSCT. Taken together, multiple lines of evidence presented in this study suggest that CAEBV disease originates from the infected HSCs, which might potentially lead to innovative therapy strategies for CAEBV.
Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Humanos , Herpesvirus Humano 4/genética , Doença Crônica , Linfo-Histiocitose Hemofagocítica/complicações , Células-Tronco HematopoéticasRESUMO
BACKGROUND: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS: Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation. RESULTS: The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS: Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.
Assuntos
Cardiomegalia , Animais , Humanos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Camundongos , Masculino , Processamento de Proteína Pós-Traducional , Camundongos Endogâmicos C57BL , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos Transgênicos , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Células HEK293RESUMO
Noninvasive control of neuronal activity in the deep brain can be illuminating for probing brain function and treating dysfunctions. Here, we present a sonogenetic approach for controlling distinct mouse behavior with circuit specificity and subsecond temporal resolution. Targeted neurons in subcortical regions were made to express a mutant large conductance mechanosensitive ion channel (MscL-G22S), enabling ultrasound to trigger activity in MscL-expressing neurons in the dorsal striatum and increase locomotion in freely moving mice. Ultrasound stimulation of MscL-expressing neurons in the ventral tegmental area could activate the mesolimbic pathway to trigger dopamine release in the nucleus accumbens and modulate appetitive conditioning. Moreover, sonogenetic stimulation of the subthalamic nuclei of Parkinson's disease model mice improved their motor coordination and mobile time. Neuronal responses to ultrasound pulse trains were rapid, reversible, and repeatable. We also confirmed that the MscL-G22S mutant is more effective to sensitize neurons to ultrasound compared to the wild-type MscL. Altogether, we lay out a sonogenetic approach which can selectively manipulate targeted cells to activate defined neural pathways, affect specific behaviors, and relieve symptoms of neurodegenerative disease.
Assuntos
Doenças Neurodegenerativas , Núcleo Subtalâmico , Camundongos , Animais , Encéfalo , Núcleo Subtalâmico/fisiologia , Núcleo Accumbens , Dopamina/fisiologia , Vias NeuraisRESUMO
The subiculum is positioned at a critical juncture at the interface of the hippocampus with the rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent memory tasks remain largely unknown. One obstacle to make comparisons of neural firing patterns between the subiculum and hippocampus is the broad firing fields of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the broad firing field of a subicular neuron into multiple subfields to find the unique functional contribution of the subiculum while male rats performed a hippocampal-dependent visual scene memory task. Some of the broad firing fields of the subicular neurons were successfully divided into multiple subfields similar to those in the CA1 by using the theta phase precession cycle. The new paradigm significantly improved the detection of task-relevant information in subicular cells without affecting the information content represented by CA1 cells. Notably, we found that multiple fields of a single subicular neuron, unlike those in the CA1, carried heterogeneous task-related information such as visual context and choice response. Our findings suggest that the subicular cells integrate multiple task-related factors by using theta rhythm to associate environmental context with action.
Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Ritmo Teta/fisiologia , Algoritmos , Animais , Região CA1 Hipocampal/anatomia & histologia , Masculino , Aprendizagem em Labirinto/fisiologia , Neurônios/citologia , Reconhecimento Visual de Modelos/fisiologia , Ratos , Ratos Long-EvansRESUMO
Proneural genes play a crucial role in neuronal differentiation. However, our understanding of the regulatory mechanisms governing proneural genes during neuronal differentiation remains limited. RFX4, identified as a candidate regulator of proneural genes, has been reported to be associated with the development of neuropsychiatric disorders. To uncover the regulatory relationship, we utilized a combination of multi-omics data, including ATAC-seq, ChIP-seq, Hi-C, and RNA-seq, to identify RFX4 as an upstream regulator of proneural genes. We further validated the role of RFX4 using an in vitro model of neuronal differentiation with RFX4 knock-in and a CRISPR-Cas9 knock-out system. As a result, we found that RFX4 directly interacts with the promoters of POU3F2 and NEUROD1. Transcriptomic analysis revealed a set of genes associated with neuronal development, which are highly implicated in the development of neuropsychiatric disorders, including schizophrenia. Notably, ectopic expression of RFX4 can drive human embryonic stem cells toward a neuronal fate. Our results strongly indicate that RFX4 serves as a direct upstream regulator of proneural genes, a role that is essential for normal neuronal development. Impairments in RFX4 function could potentially be related to the development of various neuropsychiatric disorders. However, understanding the precise mechanisms by which the RFX4 gene influences the onset of neuropsychiatric disorders requires further investigation through human genetic studies.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Homeodomínio , Neurônios , Fatores do Domínio POU , Fatores de Transcrição de Fator Regulador X , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , RNA-Seq , Diferenciação Celular , Proteínas de Homeodomínio/genética , Fatores do Domínio POU/genética , Fatores de Transcrição de Fator Regulador X/genéticaRESUMO
In σ-dependent transcriptional pausing, the transcription initiation factor σ, translocating with RNA polymerase (RNAP), makes sequence-specific proteinDNA interactions with a promoter-like sequence element in the transcribed region, inducing pausing. It has been proposed that, in σ-dependent pausing, the RNAP active center can access off-pathway "backtracked" states that are substrates for the transcript-cleavage factors of the Gre family and on-pathway "scrunched" states that mediate pause escape. Here, using site-specific proteinDNA photocrosslinking to define positions of the RNAP trailing and leading edges and of σ relative to DNA at the λPR' promoter, we show directly that σ-dependent pausing in the absence of GreB in vitro predominantly involves a state backtracked by 24 bp, and σ-dependent pausing in the presence of GreB in vitro and in vivo predominantly involves a state scrunched by 23 bp. Analogous experiments with a library of 47 (â¼16,000) transcribed-region sequences show that the state scrunched by 23 bpand only that stateis associated with the consensus sequence, T−3N−2Y−1G+1, (where −1 corresponds to the position of the RNA 3' end), which is identical to the consensus for pausing in initial transcription and which is related to the consensus for pausing in transcription elongation. Experiments with heteroduplex templates show that sequence information at position T−3 resides in the DNA nontemplate strand. A cryoelectron microscopy structure of a complex engaged in σ-dependent pausing reveals positions of DNA scrunching on the DNA nontemplate and template strands and suggests that position T−3 of the consensus sequence exerts its effects by facilitating scrunching.
Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , Microscopia Crioeletrônica , DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genéticaRESUMO
Cep57, a vital centrosome-associated protein, recruits essential regulatory enzymes for centriole duplication. Its dysfunction leads to anomalies, including reduced centrioles and mosaic-variegated aneuploidy syndrome. Despite functional investigations, understanding structural aspects and their correlation with functions is partial till date. We present the structure of human Cep57 C-terminal microtubule binding (MT-BD) domain, revealing conserved motifs ensuring functional preservation across evolution. A leucine zipper, with an adjacent possible microtubule-binding region, potentially forms a stabilizing scaffold for microtubule nucleation-accommodating pulling and tension from growing microtubules. This study highlights conserved structural features of Cep57 protein, compares them with other analogous proteins, and explores how protein function is maintained across diverse organisms.
Assuntos
Proteínas de Ciclo Celular , Zíper de Leucina , Microtúbulos , Ligação Proteica , Humanos , Microtúbulos/metabolismo , Microtúbulos/química , Cristalografia por Raios X , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Moleculares , Sítios de Ligação , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Sequência de Aminoácidos , Domínios Proteicos , Proteínas NuclearesRESUMO
The high mortality rate of esophageal squamous cell carcinoma (ESCC) is exacerbated by the absence of early diagnostic markers. The pronounced heterogeneity of mutations in ESCC renders copy number alterations (CNAs) more prevalent among patients. The identification of CNA genes within esophageal squamous dysplasia (ESD), a precancerous stage of ESCC, is crucial for advancing early detection efforts. Utilization of liquid biopsies via droplet-based digital PCR (ddPCR) offers a novel strategy for detecting incipient tumor traces. This study undertook a thorough investigation of CNA profiles across ESCC development stages, integrating data from existing databases and prior investigations to pinpoint and confirm CNA markers conducive to early detection of ESCC. Targeted sequencing was employed to select potential early detection genes, followed by the establishment of prediction models for ESCC early detection using ddPCR. Our analysis revealed widespread CNAs during the ESD stage, mirroring the CNA landscape observed in ESCC. A total of 40 CNA genes were identified as highly frequent in both ESCC and ESD lesions, through a comprehensive gene-level CNA analysis encompassing ESD and ESCC tissues, ESCC cell lines, and pan-cancer data sets. Subsequent validation of 5 candidate markers via ddPCR underscored the efficacy of combined predictive models encompassing PIK3CA, SOX2, EGFR, MYC, and CCND1 in early ESCC screening, as evidenced by the area-under-the-curve values exceeding 0.92 (P < .0001) across various detection contexts. The findings highlighted the significant utility of CNA genes in the early screening of ESCC, presenting robust models that could facilitate early detection, broad-scale population screening, and adjunctive diagnosis.
Assuntos
Biomarcadores Tumorais , Variações do Número de Cópias de DNA , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Feminino , Ácidos Nucleicos Livres/genética , MasculinoRESUMO
Neuronal hyperactivity induced by ß-amyloid (Aß) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aß increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca2+-dependent manner, associated with aberrant elevation of synapses in both Aß-treated neurons in vitro and the cortex of APP/PS1 mice in vivo. By using Pcdhgc5 gene knockout mice, we demonstrated the critical function of Pcdh-γC5 in regulating neuronal synapse formation, synaptic transmission, and cognition. To further investigate the role of Pcdh-γC5 in AD pathogenesis, the aberrantly enhanced expression of Pcdh-γC5 in the brain of APP/PS1 mice was knocked down by shRNA. Downregulation of Pcdh-γC5 efficiently rescued neuronal hyperactivity and impaired cognition in APP/PS1 mice. Our findings revealed the pathophysiological role of Pcdh-γC5 in mediating Aß-induced neuronal hyperactivity and cognitive deficits in AD and identified a novel mechanism underlying AD pathogenesis.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Caderinas , Camundongos Knockout , Neurônios , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Caderinas/metabolismo , Caderinas/genética , Camundongos , Neurônios/metabolismo , Camundongos Transgênicos , Sinapses/metabolismo , Sinapses/patologia , Proteínas Relacionadas a Caderinas , Camundongos Endogâmicos C57BL , Masculino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Células Cultivadas , Transtornos Cognitivos/metabolismoRESUMO
Background Comparative performance between artificial intelligence (AI) and breast US for women with dense breasts undergoing screening mammography remains unclear. Purpose To compare the performance of mammography alone, mammography with AI, and mammography plus supplemental US for screening women with dense breasts, and to investigate the characteristics of the detected cancers. Materials and Methods A retrospective database search identified consecutive asymptomatic women (≥40 years of age) with dense breasts who underwent mammography plus supplemental whole-breast handheld US from January 2017 to December 2018 at a primary health care center. Sequential reading for mammography alone and mammography with the aid of an AI system was conducted by five breast radiologists, and their recall decisions were recorded. Results of the combined mammography and US examinations were collected from the database. A dedicated breast radiologist reviewed marks for mammography alone or with AI to confirm lesion identification. The reference standard was histologic examination and 1-year follow-up data. The cancer detection rate (CDR) per 1000 screening examinations, sensitivity, specificity, and abnormal interpretation rate (AIR) of mammography alone, mammography with AI, and mammography plus US were compared. Results Among 5707 asymptomatic women (mean age, 52.4 years ± 7.9 [SD]), 33 (0.6%) had cancer (median lesion size, 0.7 cm). Mammography with AI had a higher specificity (95.3% [95% CI: 94.7, 95.8], P = .003) and lower AIR (5.0% [95% CI: 4.5, 5.6], P = .004) than mammography alone (94.3% [95% CI: 93.6, 94.8] and 6.0% [95% CI: 5.4, 6.7], respectively). Mammography plus US had a higher CDR (5.6 vs 3.5 per 1000 examinations, P = .002) and sensitivity (97.0% vs 60.6%, P = .002) but lower specificity (77.6% vs 95.3%, P < .001) and higher AIR (22.9% vs 5.0%, P < .001) than mammography with AI. Supplemental US alone helped detect 12 cancers, mostly stage 0 and I (92%, 11 of 12). Conclusion Although AI improved the specificity of mammography interpretation, mammography plus supplemental US helped detect more node-negative early breast cancers that were undetected using mammography with AI. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Whitman and Destounis in this issue.
Assuntos
Inteligência Artificial , Densidade da Mama , Neoplasias da Mama , Detecção Precoce de Câncer , Mamografia , Ultrassonografia Mamária , Humanos , Feminino , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Ultrassonografia Mamária/métodos , Detecção Precoce de Câncer/métodos , Adulto , Sensibilidade e Especificidade , Mama/diagnóstico por imagem , IdosoRESUMO
BACKGROUND: The cancer experienced in adolescent and young adult (AYA) could disturb developmental changes and long-term life. The current AYA guidelines and research for survivorship were developed and reported according to the general age range of 15-39 years; however, expected life events vary by diagnosed age. We aimed to examine the social, psychological, and physical well-being of AYA cancer survivors by age at diagnosis using a multinational representative dataset focusing on age at diagnosis. METHODS: We conducted a cross-sectional study using the US and Korean National Health and Nutrition Examination Surveys from 2007 to 2018. Participants diagnosed with any cancer aged 15-39 years and were aged > 18 years at the survey year were defined as AYA cancer survivors. AYA were classified into three groups based on their diagnosed age: adolescent survivors (diagnosed between the ages of 15 and 19, n = 45), young adult survivors (diagnosed between the ages of 20 and 29, n = 238), and late young adult survivors (diagnosed between the ages of 30 and 39, n = 539). We also selected an age-, sex-, race-, and survey year-matched general population with 1:5 ratio among participants without cancer (N = 4110). RESULTS: The average age of the survey was 29.1, 43.7, and 48.7 years for AYA survivors diagnosed during adolescence, young adulthood, and late young adulthood, respectively. Adolescent survivors had more non-couple marital status (adjusted odds ratio (aOR), 1.34; 95% CI, 1.10-1.64) and unemployed (aOR, 1.30; 95% CI, 1.05-1.61) compared to late young adult survivors. Comparing with the matched general, adolescent survivors were more in poor general health (aOR, 4.65; 95% CI, 2.09-10.38) and unemployed (aOR, 2.17; 95% CI, 1.12-4.24) and late young adult survivors were more non-couple (aOR, 1.40; 95% CI, 1.05-1.86). CONCLUSION: This study provides evidence for future studies on long-term health, which may vary according to age at the time of diagnosis among AYA with cancer.
Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Adolescente , Adulto Jovem , Masculino , Feminino , Estudos Transversais , Neoplasias/epidemiologia , Neoplasias/diagnóstico , Adulto , Sobreviventes de Câncer/estatística & dados numéricos , Fatores Etários , Estados Unidos/epidemiologia , Bases de Dados Factuais , República da Coreia/epidemiologia , Inquéritos NutricionaisRESUMO
Organic-inorganic hybrid perovskites have attracted significant attention for optoelectronic applications due to their efficient photoconversion properties. However, grain boundaries and irregular crystal orientations in polycrystalline films remain issues. This study presents a method for producing crystalline-orientation-controlled perovskite single-crystal films using retarded solvent evaporation. It is shown that single-crystal films, grown via inverse temperature crystallization within a confined space, exhibit enhanced optoelectronic property. Using interfacial polymer layer, this method produces high-quality perovskite single-crystalline films with varying crystal orientations. Density functional theory calculations confirm favorable adsorption energies for (110) surfaces with methylammonium iodide and PbI2 terminations on poly(3-hexylthiophene), and stronger adsorption for (224) surfaces with I and methylammonium terminations on polystyrene, influenced by repulsive forces between the thiophene group and the perovskite surface. The correlation between charge transport characteristics and perovskite single-crystalline properties highlights potential advancements in perovskite optoelectronics, improving device performance and reliability.
RESUMO
Lead halide perovskite solar cells have been emerging as very promising candidates for applications in indoor photovoltaics. To maximize their indoor performance, it is of critical importance to suppress intrinsic defects of the perovskite active layer. Herein, a facile solvent-engineering strategy is developed for effective suppression of both surface and bulk defects in lead halide perovskite indoor solar cells, leading to a high efficiency of 35.99% under the indoor illumination of 1000 lux Cool-white light-emitting diodes. Replacing dimethylformamide (DMF) with N-methyl-2-pyrrolidone (NMP) in the perovskite precursor solvent significantly passivates the intrinsic defects within the thus-prepared perovskite films, prolongs the charge carrier lifetimes and reduces non-radiative charge recombination of the devices. Compared to the DMF, the much higher interaction energy between NMP and formamidinium iodide/lead halide contributes to the markedly improved quality of the perovskite thin films with reduced interfacial halide deficiency and non-radiative charge recombination, which in turn enhances the device performance. This work paves the way for developing efficient indoor perovskite solar cells for the increasing demand for power supplies of Internet-of-Things devices.
RESUMO
Previous studies demonstrated that sigma receptor (σR) antagonists alone fail to alter cocaine self-administration despite blocking various other effects of cocaine. However, σR antagonists when combined with dopamine transporter (DAT) inhibitors substantially decrease cocaine self-administration. To better understand the effects of this combination, the present study examined the effects of σR antagonist and DAT inhibitor combinations in male rats discriminating cocaine (10 mg/kg, i.p.) from saline injections. The DAT inhibitors alone [(-)-2-ß-carbomethoxy-3-ß-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate monohydrate (WIN 35,428) and methylphenidate] at low (0.1-mg/kg) doses that were minimally active failed to shift the dose-effect function for discriminative-stimulus effects of cocaine to the left more than 2-fold. At 0.32 mg/kg the DAT inhibitors alone shifted the cocaine dose-effect function leftward 24- or 6.6-fold, respectively. The σR antagonists (BD1008, BD1047, and BD1063) failed to fully substitute for cocaine, although BD1008 and BD1047 substituted partially. At 10 mg/kg, BD1008, BD1047, or BD1063 alone shifted the cocaine dose-effect function leftward less than 6.0-fold. In combination with 0.1 mg/kg WIN 35,428, the 10 mg/kg doses of σR antagonists shifted the cocaine dose-effect function from 12.3- to 36.7-fold leftward, and with 0.32 mg/kg WIN 35,428 from 14.3- to 440-fold leftward. In combination with 0.1 mg/kg methylphenidate, those σR antagonist doses shifted the cocaine dose-effect function from 5.5- to 55.0-fold leftward, and with 0.32 mg/kg methylphenidate from 10.5- to 48.1-fold leftward. The present results suggest that dual DAT/σR inhibition produces agonist-like subjective effects that may promote decreases in self-administration obtained in previous studies. SIGNIFICANCE STATEMENT: There is currently no approved medication for treating stimulant abuse, although dopamine uptake inhibitors in combination with sigma receptor (σR) antagonists decrease cocaine self-administration in laboratory animals. The present study assessed how this combination alters the discriminative-stimulus effects of cocaine in male rats. Results suggest that concurrent dopamine uptake inhibition and σR antagonism together may promote decreases in self-administration, possibly by mimicking the subjective effects extant when subjects cease continued cocaine self-administration.
Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Ratos Sprague-Dawley , Receptores sigma , Animais , Masculino , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Receptores sigma/antagonistas & inibidores , Receptores sigma/metabolismo , Ratos , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Discriminação Psicológica/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Metilfenidato/farmacologia , AutoadministraçãoRESUMO
Genetic loss-of-function mutations of Nav1.7 channel, abundantly expressed in peripheral nociceptive neurons, cause congenital insensitivity to pain (CIP) in humans, indicating that selective inhibition of the channel may lead to potential therapy of pain disorders. In this study, we investigated a novel compound, 5-chloro-N-(cyclopropylsulfonyl)-2-fluoro-4-(2-(8-(furan-2-ylmethyl)-8-azaspiro [4.5] decan-2-yl) ethoxy) benzamide (QLS-278) that inhibits Nav1.7 channel and exhibits anti-nociceptive activity. Compound QLS-278 exhibits inactivation- and concentration-dependent inhibition of macroscopic currents of Nav1.7 channels stably expressed in HEK293 cells with an IC50 of 1.2 {plus minus} 0.2 µM. QLS-278 causes a hyperpolarization shift of the channel inactivation and delays recovery from inactivation, without an obvious effect on voltage-dependent activation. In mouse DRG neurons, QLS-278 suppresses native TTX-sensitive Nav currents and also reduces neuronal firing. Moreover, QLS-278 dose-dependently relieves neuropathic pain induced by spared nerve injury and inflammatory pain induced by formalin without significant alteration of spontaneous locomotor activity in mice. Altogether, our identification of the novel compound QLS-278 may hold developmental potential for the treatment of chronic pain. Significance Statement QLS-278, a novel voltage-gated sodium Nav1.7 channel blocker, inhibits native TTX-S Na+ current and reduces action potential firings in DRG sensory neurons. QLS-278 also exhibits antinociceptive activity in mouse models of pain, thus demonstrating potential for the development of a treatment for chronic pain.
RESUMO
Due to the ultrahigh theoretical specific capacity (3860â mAh g-1) and low redox potential (-3.04â V vs. standard hydrogen electrode), Lithium (Li) metal anode (LMA) received increasing attentions. However, notorious dendrite and volume expansion during the cycling process seriously hinder the development of high energy density Li metal batteries. Constructing three-dimensional (3D) current collectors for Li can fundamentally solve the intrinsic drawback of hostless for Li. Therefore, this review systematically introduces the design and synthesis engineering and the current development status of different 3D collectors in recent years (the current collectors are divided into two major parts: metal-based current collectors and carbon-based current collectors). In the end, some perspectives of the future promotion for LMA application are also presented.
RESUMO
BACKGROUND: Comorbid depression substantially affects the management of glycemia and diabetes-related complications among patients with type 2 diabetes mellitus. In this study, we sought to determine the association between weight change over 4 years and depression risk among patients with type 2 diabetes mellitus. METHODS: This population-based retrospective cohort study from the National Health Insurance Services of Korea included 1 111 345 patients with type 2 diabetes who were divided into groups according to body weight change over 4 years. Body weight changes were compared with the preceding 4-year period (2005-2008). Depression was defined according to the International Classification of Diseases 10th revision code for depression (F32 and F33) on one or more inpatient or outpatient claims. RESULTS: During a median follow-up of 7.4 years, 244 081 cases of depression were identified. We observed a U-shaped association between body weight change and depression risk with a higher risk among both groups of weight loss (hazard ratio (HR) 1.17, 95% CI 1.15-1.19 for ⩾ -10%; HR 1.07, 95% CI 1.06-1.08 for -10 to -5%) and weight gain (HR 1.06, 95% CI 1.04-1.08 for ⩾10%; HR 1.02, 95% CI 1.01-1.04 for 5-10%) compared with the stable weight group (-5 to 5%). CONCLUSIONS: A U-shaped association between body weight change and depression risk was observed in this large nationwide cohort study. Our study suggests that patients with type 2 diabetes and weight change, either gain or loss, could be considered a high-risk group for depression.