Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2319427121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442175

RESUMO

Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.

2.
Environ Sci Technol ; 57(5): 1882-1893, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36607701

RESUMO

A Co3O4-activated chlorite (Co3O4/chlorite) process was developed to enable the simultaneous generation of high-valent cobalt species [Co(IV)] and ClO2 for efficient oxidation of organic contaminants. The formation of Co(IV) in the Co3O4/chlorite process was demonstrated through phenylmethyl sulfoxide (PMSO) probe and 18O-isotope-labeling tests. Both experiments and theoretical calculations revealed that chlorite activation involved oxygen atom transfer (OAT) during Co(IV) formation and proton-coupled electron transfer (PCET) in the Co(IV)-mediated ClO2 generation. Protons not only promoted the generation of Co(IV) and ClO2 by lowering the energy barrier but also strengthened the resistance of the Co3O4/chlorite process to coexisting anions, which we termed a proton enhancement effect. Although both Co(IV) and ClO2 exhibited direct oxidation of contaminants, their contributions varied with pH changes. When pH increased from 3 to 5, the deprotonation of contaminants facilitated the electrophilic attack of ClO2, while as pH increased from 5 to 8, Co(IV) gradually became the main contributor to contaminant degradation owing to its higher stability than ClO2. Moreover, ClO2- was transformed into nontoxic Cl- rather than ClO3- after the reaction, thus greatly reducing possible environmental risks. This work described a Co(IV)-involved chlorite activation process for efficient removal of organic contaminants, and a proton enhancement mechanism was revealed.


Assuntos
Compostos Clorados , Prótons , Cloretos , Óxidos , Cobalto , Oxirredução , Cloro
3.
Water Res ; 251: 121119, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219690

RESUMO

The rising debate on the dilemma of photocatalytic water treatment technologies has driven researchers to revisit its prospects in water decontamination. Nowadays, heterogeneous photocatalysis coupled oxidant activation techniques are intensively studied due to their dual advantages of high mineralization and high oxidation efficiency in pollutant degradation. This paved a new way for the development of solar-driven oxidation technologies. Previous reviews focused on the advances in one specific coupling technique, such as photocatalytic persulfate activation and photocatalytic ozonation, but lack a consolidated understanding of the synergy between photocatalytic oxidation and oxidant activation. The synergy involves the migration of photogenerated carriers, radical reaction, and the increase in oxidation rate and mineralization. This review systematically summarizes the fundamentals of activation mechanism, advanced characterization techniques and synergistic effects of coupling techniques for water decontamination. Besides, specific cases that lead researchers astray in revealing mechanisms and assessing synergy are critically discussed. Finally, the prospects and challenges are put forward to further deepen the research on heterogeneous photocatalytic activation of oxidants. This work provides a consolidated view of the existing heterogeneous photocatalysis coupled oxidant activation techniques and inspires researchers to develop more promising solar-driven technologies for water decontamination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Descontaminação , Poluentes Químicos da Água/análise , Catálise , Oxirredução , Purificação da Água/métodos
4.
Adv Mater ; 36(18): e2311869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266188

RESUMO

Iron-based catalysts are widely used in Fenton-like water pollution control technology due to their high efficiency, but their practical applications are limited by complex preparation conditions and strong blockage of Fe2+/Fe3+ cycle during the reaction. Here, a new iron-molybdenum bimetallic carbon-based catalyst is designed and synthesized using cellulose hydrogel for adsorption of Fe and Mo bimetals as a template, and the effective iron cycle in water treatment is realized. The integrated materials (Fe2.5Mo@CNs) with "catalytic/cocatalytic" performance have higher Fenton-like activation properties and universality than the equivalent quantity iron-carbon-based composite catalysts (Fe@CNs). Through the different characterization methods, experimental verifications and theoretical calculations show that the unique Fe3Mo3N structure promotes the adsorption of persulfate and reduces the energy barrier of the reaction, further completing the double enhancement of radicals (such as SO4·-) and nonradicals (1O2 and electron transport process). The integrated "catalytic/cocatalytic" combined material is expected to provide a new promotion strategy for Fenton-like water pollution control.

5.
J Hazard Mater ; 470: 134162, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555670

RESUMO

In electro-Fenton (EF), development of a bifunctional electrocatalyst to realize simultaneous H2O2 generation and activation efficiently for generating reactive species remains a challenge. In particular, a nonradical-mediated EF is more favorable for actual wastewater remediation, and deserves more attention. In this study, three-dimensional graphene loaded with Fe3O4 nanoparticles (Fe3O4@3D-GNs) with abundant oxygen-containing functional groups (OFGs) was synchronously synthesized using a NaCl-template method and served as a cathode to establish a highly efficient and selective EF process for contaminant degradation. The amounts of OFGs can be effectively modulated via the pyrolysis temperature to regulate the 2e- oxygen reduction reaction activity and reactive oxygen species (ROS) production. The optimized Fe3O4@3D-GNs synthesized at 750 °C (Fe3O4@3D-GNs-750) with the highest -C-O-C and -C꞊O group ratios exhibited the maximum H2O2 and 1O2 yields during electrocatalysis, thus showing remarkable versatility for eliminating organic contaminants from surface water bodies. Experiments and theoretical calculations have demonstrated the dominant role of -C-O-C in generating H2O2 and the positive influence of -C꞊O sites on the production of 1O2. Moreover, the surface-bound Fe(II) favors the generation of surface-bound •OH, which steers a more favorable oxidative conversion of H2O2 to 1O2. Fe3O4@3D-GNs were proven to be less pH-dependent, low-energy, stable, and recyclable for practical applications in wastewater purification. This study provides an innovative strategy to engineer active sites to achieve the selective electrocatalysis for eliminating pollution and reveals a novel perspective for 1O2-generation mechanism in the Fenton reaction.

6.
ACS Appl Mater Interfaces ; 14(28): 31920-31932, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35811472

RESUMO

Visible-light photocatalytic chlorite activation has emerged as an efficient oxidation process for micropollutant elimination. However, the in-depth mechanism of chlorite activation is not understood. In this study, using neodymium-doped bismuth vanadate (NdxBi1-xVO4-δ) as a model catalyst, we describe the oxygen vacancy (OV)-mediated chlorite activation process for efficient ClO2 generation and cephalexin (CPX) degradation. DFT calculations and in situ DRIFTS suggest that the OV-introduced surface -OH serves as the Brønsted acidic center for chlorite adsorption. The OV-mediated chlorite activation involves multistep reactions that surface hydroxylation and proton transfer from the surface -OH to chlorite, forming metastable chlorous acid (HClO2) and further disproportionating to ClO2. As compared with vis-photocatalysis, the vis-photocatalysis coupled with chlorite activation (vis/chlorite) technique exhibits superior performance in antibiotic degradation and achieves efficient microorganism inactivation. This work uncovers the role of OVs on chlorite activation and provides a rational strategy for designing visible-light-driven oxidation techniques in water and wastewater treatment.

7.
J Hazard Mater ; 435: 128963, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35486999

RESUMO

Persulfate (PS)-based chemical oxidation is an effective method for the remediation of petroleum-contaminated soils, but higher concentrations of PS (3-40%) may lead to soil acidification (pH decreased by 1.8-6.2 units) and affect the microbial communities. In this study, Fe/N co-doped carbonaceous nanocomposites (Fe-N @ CN) that can efficiently activate PS were developed from biogas residue for the remediation of petroleum-contaminated soil. The as-obtained Fe-N@CN displayed that the Fe-based nanoparticles were encapsulated in graphitic nanosheets, with Fe3C and FeN0.0760 as the main bonding modes. The removal efficiency of total petroleum hydrocarbons (TPHs) reached 73.14% in 3 days with a PS dose of 2% and catalyst dose of 0.4%, and increased by 15.8% on adding 30 mmol/kg of ß-cyclodextrin. The free-radical quenching experiment and electron paramagnetic resonance revealed that SO4·-,·OH, O2·-, and 1O2 were involved in the removal of TPHs. Because of the low PS dosage, the remediation process had no significant effect on the soil pH. During the remediation process, soil catalase activity was enhanced and then recovered, whereas the soil bacterial community, reflected by the operational taxonomic unit values, decreased and then recovered. TPH-degrading bacteria were produced in the Fe-N@CN/PS/soil system after chemical oxidation, further contributing to soil remediation.


Assuntos
Nanocompostos , Petróleo , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Biocombustíveis , Hidrocarbonetos/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise
8.
Chemosphere ; 270: 129295, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33401076

RESUMO

Novel CuS nanoparticles embedded into carbon nanosheets (CuS@CNs) were prepared in situ by applying wheat straw cellulose/feather protein hydrogel beads as templates and were used to photocatalytically activate H2O2 to degrade 2,4-dichlorphenol (2,4-DCP). The photo-Fenton catalytic properties of the nanocomposite catalysts obtained under different synthetic conditions, including different Cu2+ concentrations, S2- concentrations and calcination temperatures, were evaluated. The results showed that CuS@CNs with 0.1 M Cu2+, 0.1 M S2- at 800 °C presented excellent photo-Fenton degradation performance for 2,4-DCP (25 mg/L) in the presence of H2O2 and could remove 90% of 2,4-DCP in 2.5 h. The water quality parameters (pH, Cl-, HCO3-, H2PO4- and SO42-) exhibited different effects on the photocatalytic degradation process. The catalytic activity of the CuS@CNs used in the cycle could be recovered after thermal regeneration. Radical quenching and electron paramagnetic resonance (EPR) experiments confirmed that ·OH species were main active radicals contributing to the degradation of 2,4-DCP. The photocatalytic mechanism of CuS@CNs was also explored by photoelectrochemical (PEC) measurements and UV-vis diffuse reflectance spectroscopy (DRS). Incorporation of carbon nanosheets could significantly improve the separation of photogenerated charge carriers to stimulate pollutant degradation by CuS. Based on the detected intermediates, the degradation pathway of 2,4-DCP in the CuS@CNs/H2O2 reaction system was also proposed.


Assuntos
Carbono , Nanocompostos , Cobre , Peróxido de Hidrogênio
9.
Sci Total Environ ; 741: 140464, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886982

RESUMO

In this study, two iron-based metal-organic framework compounds (MOFs), were used and compared as catalysts for persulfate (PS) activation to degrade bisphenol F (BPF). The outstanding advantage of using amino-functionalized MOFs in the catalytic system was verified under different reaction conditions, and the mechanism was explored. The results indicated that NH2-MIL-101(Fe)/PS system not only had a wide pH application range, but also possessed an excellent catalytic performance towards interference from the coexisting anions and humic acid. Density functional theory (DFT) calculations showed that, compared with MIL-101(Fe), the -NH2 modification could significantly improve the electronic conductivity of NH2-MIL-101(Fe) by enhancing its Fermi level (-4.28 eV) and binding energy to PS (-1.19 eV). The free radical quenching experiments were combined with electron paramagnetic resonance (EPR) confirmed that free radicals (SO4-, OH, O2-) worked together with the non-radical (1O2) reaction to remove 91% BPF within 40 min in the NH2-MIL-101(Fe)/PS system. The two proposed BPF degradation pathway were related to hydroxylation, oxidation and ring cracking. The toxicity of the BPF degradation intermediates as well as its final products were also evaluated.

10.
Sci Total Environ ; 693: 133657, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31635004

RESUMO

A series of Cu2O/Cu/rGO@carbon nanomaterial (Cu2O/Cu/rGO@CN) heterogeneous photocatalysts were successfully synthesized synchronously via a novel sodium alginate hydrogel method. Cu2O nanoparticles (~50nm) were synthesized by calcination under the protection of a nitrogen atmosphere. Cu nanoparticles (~6nm) inevitably appeared on the surface of Cu2O, thereby forming a Cu2O/Cu heterostructure which is known as a Schottky junction. Graphene oxide (GO) nanosheets were synchronously reduced in situ by sodium alginate during the synthesis process and eventually acted as a 3-D structure with the assistance of the hydrogel skeleton. Because of the 3-D rGO modification, both the adsorption capacity and the photocatalytic activity of Cu2O/Cu/rGO@CN were significantly improved. The rate of p-nitrochlorobenzene (p-NCB) degradation catalyzed by Cu2O/Cu/rGO@CN was ~1.97×10-2min-1, which was much higher than that of the degradation catalyzed by Cu2O/Cu@CN (~0.239×10-2min-1). This result could be attributed to the two-stage Cu2O/Cu/rGO heterostructure, which facilitated efficient electron-hole separation. This method has the advantages of nontoxic raw materials, facile synthesis and reduced auxiliary usage, providing a new technique for designing heterogeneous photocatalysts.

11.
Carbohydr Polym ; 220: 202-210, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31196541

RESUMO

Magnetic hydrogel derived from wheat straw cellulose (WSC) and feather protein (FP) was successfully derived from [Bmim]Cl ionic liquids for copper nanoparticles carrier to prepare magnetic hydrogel-Cu (m-WSC/FP-Cu). Morphology, structure and component of m-WSC/FP-Cu were characterized by different techniques (SEM, TEM, XRD, FTIR, VSM, etc.). The activity of m-WSC/FP-Cu were evaluated by employing them as catalysts for the reduction of 2-nitrobenzoic acid (2-NA) to a useful industrial intermediates, 2-aminobenzoic acid (2-ABA). Effect of experimental conditions, including m-WSC/FP-Cu dosage, 2-NA initial concentration, NaBH4 dosage and temperature, were investigated. The m-WSC/FP-Cu exhibited maximum catalytic activity under conditions of 1.00 g m-WSC/FP-Cu, 100 mg/L 2-NA and 0.3 g NaBH4. Besides, higher activity of m-WSC/FP-Cu was obtained at higher temperature. The activity of m-WSC/FP-Cu maintained 99.02% over 5 cycles utilization and 90.60% after 30 days storage, which exhibited excellent recyclability and stability. It is expected that the m-WSC/FP-Cu have the potential for treating organic wastewater cooperated with a catalyst regeneration device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA