RESUMO
A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.
Assuntos
Curcumina/farmacologia , Proteína Forkhead Box O3/metabolismo , Oócitos/efeitos dos fármacos , Reserva Ovariana , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Transdução de Sinais , Análise de Célula Única , TranscriptomaRESUMO
Purpose: Gait variability analysis has been clinically adopted to characterize the presentation of various neurological diseases. However, literature and practice lack a comprehensive murine model assessment of the gait deficits that result from transient focal ischemic stroke. Further, correlations between gait parameters and the gene expression profiles associated with brain ischemia have yet to be identified. This study quantitatively assesses gait deficits through a murine model of transient focal cerebral ischemia on day 7 to determine associations between gait deficits and ischemia-related gene expressions.Methods: A total of 182 dynamic and static gait parameters from the transient middle cerebral artery occlusion (MCAO) murine model for simulating human transient focal ischemic stroke on day 7 were measured using the CatWalk system. Pearson's correlation analysis and genes associated with ischemia were identified from the existing literature to aid the investigation of the relationship between gait variability and gene expression profiles.Results: Thirty-nine gait parameters and the mRNA expression levels of four of the eight ischemia-associated genes exhibited more significant change in the MCAO models (p < 0.005) on day 7. Twenty-six gait parameters exhibited strong correlations with four ischemia-associated genes.Conclusion: This examination of gait variability and the strong correlation to the gene expression profiles associated with transient focal brain ischemia on day 7 provides a quantitative and reliable assessment of the MCAO model's motor performance. This research provides valuable insights into the study of disease progression and offers novel therapeutic interventions in the murine modeling of ischemic stroke.
Assuntos
Marcha/genética , Marcha/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Ataque Isquêmico Transitório/genética , Acidente Vascular Cerebral/genética , Animais , Correlação de Dados , Infarto da Artéria Cerebral Média , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Camundongos , Córtex Motor/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologiaRESUMO
Chemotherapy can significantly reduce follicle counts in ovarian tissues and damage ovarian stroma, causing endocrine disorder, reproductive dysfunction, and primary ovarian insufficiency (POI). Recent studies have suggested that extracellular vesicles (EVs) secreted from mesenchymal stem cells (MSCs) exert therapeutic effects in various degenerative diseases. In this study, transplantation of EVs from human induced pluripotent stem cell-derived MSCs (iPSC-MSC-EVs) resulted in significant restoration of ovarian follicle numbers, improved granulosa cell proliferation, and inhibition of apoptosis in chemotherapy-damaged granulosa cells, cultured ovaries, and in vivo ovaries in mice. Mechanistically, treatment with iPSC-MSC-EVs resulted in up-regulation of the integrin-linked kinase (ILK) -PI3K/AKT pathway, which is suppressed during chemotherapy, most likely through the transfer of regulatory microRNAs (miRNAs) targeting ILK pathway genes. This work provides a framework for the development of advanced therapeutics to ameliorate ovarian damage and POI in female chemotherapy patients.
Assuntos
Antineoplásicos , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Feminino , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-aktRESUMO
Gait analysis has been widely used to examine the behavioral presentation of numerous neurological disorders. Thorough murine model evaluation of the subarachnoid hemorrhage (SAH)-associated gait deficits is missing. This study measures gait deficits using a clinically relevant murine model of SAH to examine associations between gait variability and SAH-associated gene expressions. A total of 159 dynamic and static gait parameters from the endovascular perforation murine model for simulating clinical human SAH were determined using the CatWalk system. Eighty gait parameters and the mRNA expression levels of 35 of the 88 SAH-associated genes were differentially regulated in the diseased models. Totals of 42 and 38 gait parameters correlated with the 35 SAH-associated genes positively and negatively with Pearson's correlation coefficients of >0.7 and <-0.7, respectively. p-SP1453 expression in the motor cortex in SAH animal models displays a significant correlation with a subset of gait parameters associated with muscular strength and coordination of limb movements. Our data highlights a strong correlation between gait variability and SAH-associated gene expression. p-SP1453 expression could act as a biomarker to monitor SAH pathological development and a therapeutic target for SAH.
Assuntos
Análise da Marcha , Hemorragia Subaracnóidea/genética , Transcriptoma , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/fisiopatologiaRESUMO
BACKGROUND: 4-vinylcyclohexene diepoxide (VCD) has long been considered a hazardous occupational chemical that promotes ovarian failure. However, VCD is also used as a research compound to chemically induce animal models of premature ovarian insufficiency (POI), and in related work we unexpectedly found that VCD apparently exhibits both dose- and duration-dependent opposing, hormone-like effects on the maintenance of the primordial follicle pool, follicle development, and ovulation induction. RESULTS: We conducted experiments with cultured murine ovaries and performed transplantation experiments using postnatal day (PD) 2 and PD12 mice and found that low-dose, short-term exposure to VCD (VCDlow) actually protects the primordial/primary follicle pool and improves the functional ovarian reserve (FOR) by disrupting follicular atresia. VCDlow inhibits follicular apoptosis and regulates the Pten-PI3K-Foxo3a pathway. Short-term VCD exposure in vivo (80 mg/kg, 5 days) significantly increases the number of superovulated metaphase II oocytes, preovulatory follicles, and corpus luteum in middle-aged mice with diminished ovarian reserve (DOR). We demonstrate that low-dose but not high-dose VCD promotes aromatase levels in granulosa cells (GCs), thereby enhancing the levels of estradiol secretion. CONCLUSION: Our study illustrates a previously unappreciated, hormone-like action for the occupational "ovotoxin" molecule VCD and strongly suggests that VCDlow should be explored for its potential utility for treating human ovarian follicular development disorders, including subfertility in perimenopausal women.
RESUMO
[This corrects the article DOI: 10.3389/fcell.2020.00587.].
RESUMO
Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal forms of stroke. From the limited previous studies and our preliminary data, white matter is considered a key predictor of the outcome and potential target of recovery. The traditional ICH model induced by injection of autologous blood or bacterial collagenase into striatum (ST) demonstrated a spontaneous functional recovery within one or 2 months. We hypothesis that an internal capsule (IC) lesion might lead to long-term axonal damage and long lasting functional deficits. Thus in this study, a modified internal capsule ICH model was conducted in rats, and the axonal damage, neurological deficits, histopathology as well as electrophysiology were characterized. The finding demonstrated that compared to ST group, the modified IC lesioned model exhibited a relatively smaller lesion volume with consistent axonal loss/degeneration and long-lasting neurological dysfunction at 2 months after ICH. Functionally, the impairment of the mNSS, ratio of contralateral forelimb usage, four limb stand index, contralateral duty cycle and ipsilateral SSEPs amplitude remained significant at 56 days. Structurally, the significant loss of PKCγ in ipsilateral cortical spinal tracts of IC group and the consistent axonal degeneration with several axonal retraction bulbs and enlarged tubular space was observed at 56 days after ICH. This study suggested that a modified IC lesioned model was proved to have long lasting neurological deficits. A comprehensive understanding of the dynamic progression after experimental ICH should aid further successful clinic translation in animal ICH studies, and provide new insights into the role of whiter matter injury in the mechanism and therapeutic targets of ICH.
RESUMO
Comparative gene expression analysis by qRT-PCR is commonly used to detect differentially expressed genes in studies of PCOS pathology. Impaired GC function is strongly associated with PCOS pathogenesis, and a growing body of studies has been dedicated to identifying differentially expressed genes in GCs in PCOS patients and healthy women by qRT-PCR. It is necessary to validate the expression stability of the selected reference genes across the tested samples for target gene expression normalization. We examined the variability and stability of expression of the 15 commonly used reference genes in GCs from 44 PCOS patients and 45 healthy women using the GeNorm, BestKeeper, and NormFinder statistical algorithms. We combined the rankings of the three programs to produce a final ranking based on the geometric means of their stability scores. We found that HPRT1, RPLP0, and HMBS out of 15 examined commonly used reference genes are stably expressed in GCs in both controls and PCOS patients and can be used for normalization in gene expression profiling by qRT-PCR. Future gene-expression studies should consider using these reference genes in GCs in PCOS patients for more accurate quantitation of target gene expression and data interpretation.
Assuntos
Perfilação da Expressão Gênica/normas , Células da Granulosa/química , Síndrome do Ovário Policístico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Adulto , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hidroximetilbilano Sintase/genética , Hipoxantina Fosforribosiltransferase/genética , Padrões de Referência , Proteínas Ribossômicas/genéticaRESUMO
OBJECTIVES: MicroRNAs (miRNAs) are considered as the cellular regulators which post-transcriptionally modulate gene expression in diverse biological processes including cell development and immunity. In this study, we investigated functions of miR-181d in dendritic cells (DCs) maturation, and the underlying mechanisms were also explored. MATERIALS AND METHODS: Here we did the miRNA screening in human DCs in response to lipopolysaccharides (LPS) by quantitative real-time PCR (qRT-PCR). The expressions of DCs maturation markers were measured after miRNA mimics transfections. The pharmacological inhibitors of signalling pathways were applied to examine miR-181d effect on DCs maturation by Western blot. Luciferase assay and mixed lymphocyte reaction (MLR) were also performed to reveal the target gene of miR-181d and test the viability of T cells treated with miR-181d transfected DCs. RESULTS: Overexpression of miR-181d per se is sufficient to promote DCs maturation, and up-regulate CD80 and CD83 expressions without LPS. Besides, we showed that miR-181d activated NF-κB pathway and also promoted the expression of pro-inflammatory cytokine IL12 and TNF-α. Inhibition of NF-κB pathway suppressed DCs maturation. Luciferase reporter assay and target gene knockdown assay indicated that miR-181d targets regulator cylindromatosis (CYLD), a primary negative regulator of NF-κB pathway. MLR assay showed that miR-181d-transfected DCs could promote T-cell proliferation than iDCs in vitro. CONCLUSION: Our study demonstrates that miR-181d is required for DCs maturation through the activation of NF-κB pathway by targeting CYLD.
Assuntos
Células Dendríticas/citologia , Lipopolissacarídeos/imunologia , MicroRNAs/genética , NF-kappa B/imunologia , Transdução de Sinais , Regulação para Cima , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Enzima Desubiquitinante CYLD , Humanos , Interleucina-12/imunologia , MicroRNAs/imunologia , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologiaRESUMO
Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5) in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.
Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Lovastatina/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glioblastoma/patologia , Células HEK293 , Humanos , Lovastatina/administração & dosagem , Lovastatina/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
BACKGROUND: Delayed cerebral infarction (DCI) is a major cause of morbidities after aneurysmal subarachnoid hemorrhage (SAH) and typically starts at day 4 to 7 after initial hemorrhage. MicroRNAs (miRNAs) play an important role in posttranscriptional gene expression control, and distinctive patterns of circulating miRNA changes have been identified for some diseases. We aimed to investigate miRNAs that characterize SAH patients with DCI compared with those without DCI. METHODS AND RESULTS: Circulating miRNAs were collected on day 7 after SAH in healthy, SAH-free controls (n=20), SAH patients with DCI (n=20), and SAH patients without DCI (n=20). We used the LASSO (least absolute shrinkage and selection operator) method of regression analysis to characterize miRNAs associated with SAH patients with DCI compared with those without DCI. In the 28 dysregulated miRNAs associated with DCI and SAH, we found that a combination of 4 miRNAs (miR-4532, miR-4463, miR-1290, and miR-4793) could differentiate SAH patients with DCI from those without DCI with an area under the curve of 100% (95% CI 1.000-1.000, P<0.001). This 4-miRNA combination could also distinguish SAH patients with or without DCI from healthy controls with areas under the curve of 99.3% (95% CI 0.977-1.000, P<0.001) and 82.0% (95% CI 0.685-0.955, P<0.001), respectively. CONCLUSIONS: We found a 4-miRNA combination that characterized SAH patients with DCI. The findings could guide future mechanistic study to develop therapeutic targets.
Assuntos
Infarto Cerebral/etiologia , MicroRNA Circulante/metabolismo , Hemorragia Subaracnóidea/complicações , Idoso , Área Sob a Curva , Biomarcadores/metabolismo , Estudos de Casos e Controles , Infarto Cerebral/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Hemorragia Subaracnóidea/diagnósticoRESUMO
BACKGROUND: Aneurysmal subarachnoid hemorrhage (SAH) is a highly morbid and fatal condition with high rate of cognitive impairment and negative impact in quality of life among survivors. Delayed cerebral infarction (DCI) is one the major factors for these negative outcomes. In this study we compared the circulating microRNA profiles of SAH patients and healthy individuals, and the circulating microRNA profiles of SAH patients with and without DCI. METHODS: Peripheral blood samples on Day 7 after the onset of SAH were subjected to microarray analysis with Affymetrix miRNA 3.0 array and quantitative PCR analysis. SAH patients with (N = 20) and without DCI (N = 20) and Healthy controls (N = 20) were included for analyses. RESULTS: We demonstrated that 99 miRNAs were found to be dysregulated in the SAH patient group with DCI. 81 miRNAs were upregulated and 18 were downregulated. Findings from KEGG pathway analysis showed that miRNAs and target genes for axon guidance and TGF-beta signaling were involved, implying that the resulted differential miRNA expression pattern reflect the results of SAH instead of etiology of the disease. miR-132-3p and miR-324-3p showed distinctive upregulations in qPCR [miR-132: 9.5 fold (95%CI: 2.3 to 16.7) in DCI group and 3.4 fold (95%CI: 1.0 to 5.8) in Non-DCI group; miR-324: 4924 fold (95%CI: 2620 to 7228) in DCI group and 4545 fold (95%CI: 2408 to 6683) in non-DCI group]. However, there were no significant differences in fold changes between SAH patients with and without DCI [fold change ratios (mean+/-SD): 2.7+/-4.2 and 1.1+/-1.1 for miRNA-132 and miRNA-324]. CONCLUSION: Our study demonstrated that as compared to healthy control, miR-132 and miR-324 showed a upregulation in both SAH DCI and Non-DCI groups. However, the differences between the SAH DCI and non-DCI groups were not statistically significant.
Assuntos
Aneurisma Intracraniano/complicações , MicroRNAs/genética , Hemorragia Subaracnóidea/sangue , Hemorragia Subaracnóidea/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Curva ROC , Adulto JovemRESUMO
AIM: To explore the relationship between DNA methyltransferase 1 (DNMT1) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) and its biological significance in primary HCC. METHODS: We carried out an immunohistochemical examination of DNMT1 in both HCC and paired non-neoplastic liver tissues from Chinese subjects. DNMT1 mRNA was further examined in HCC cell lines by real-time PCR. We inhibited DNMT1 using siRNA and detected the effect of depletion of DNMT1 on cell proliferation ability and cell apoptosis in the HCC cell line SMMC-7721. RESULTS: DNMT1 protein expression was increased in HCCs compared to histologically normal non-neoplastic liver tissues and the incidence of DNMT1 immunoreactivity in HCCs correlated significantly with poor tumor differentiation (P = 0.014). There were more cases with DNMT1 overexpression in HCC with HBV (42.85%) than in HCC without HBV (28.57%). However, no significant difference in DNMT1 expression was found in HBV-positive and HBV-negative cases in the Chinese HCC group. There was a trend that DNMT1 RNA expression increased more in HCC cell lines than in pericarcinoma cell lines and normal liver cell lines. In addition, we inhibited DNMT1 using siRNA in the SMMC-7721 HCC cell line and found depletion of DNMT1 suppressed cells growth independent of expression of proliferating cell nuclear antigen (PCNA), even in HCC cell lines where DNMT1 was stably decreased. CONCLUSION: The findings implied that DNMT1 plays a key role in HBV-related hepatocellular tumorigenesis. Depletion of DNMT1 mediates growth suppression in SMMC-7721 cells.