Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354778

RESUMO

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Assuntos
Celulose 1,4-beta-Celobiosidase , Ensaios Enzimáticos , Genoma Fúngico , Mutação , Engenharia de Proteínas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/classificação , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Genoma Fúngico/genética , Engenharia de Proteínas/métodos , Especificidade por Substrato , Talaromyces/enzimologia , Talaromyces/genética , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/metabolismo , Biocatálise
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622792

RESUMO

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.


Assuntos
Fungos/metabolismo , Lignina/metabolismo , Redes e Vias Metabólicas , Biopolímeros/metabolismo , Biotransformação , Ecossistema , Compostos Orgânicos/metabolismo , Microbiologia do Solo
3.
J Ind Microbiol Biotechnol ; 49(6)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513366

RESUMO

Heterologous protein production has been challenging in the hyper-cellulolytic fungus, Trichoderma reesei as the species is known for poor transformation efficiency, low homologous recombination frequency, and marginal screening systems for the identification of successful transformants. We have applied the 2A-peptide multi-gene expression system to co-express four proteins, which include three cellulases: a cellobiohydrolase (CBH1), an endoglucanase (EG1), and a ß-D-glucosidase (BGL1), as well as the enhanced green fluorescent protein (eGFP) marker protein. We designed a new chassis vector, pTrEno-4X-2A, for this work. Expression of these cellulase enzymes was confirmed by real-time quantitative reverse transcription PCR and immunoblot analysis. The activity of each cellulase was assessed using chromogenic substrates, which confirmed the functionality of the enzymes. Expression and activity of these enzymes were proportional to the level of eGFP fluorescence, thereby validating the reliability of this screening technique. An 18-fold differencein protein expression was observed between the first and third genes within the 2A-peptide construct. The availability of this new multi-gene expression and screening tool is expected to greatly impact multi-enzyme applications, such as the production of complex commercial enzyme formulations and metabolic pathway enzymes, especially those destined for cell-free applications.


Assuntos
Celulase , Hypocreales , Trichoderma , Celulase/metabolismo , Reprodutibilidade dos Testes , beta-Glucosidase/metabolismo , Hypocreales/metabolismo , Trichoderma/metabolismo
4.
Plant Physiol ; 181(2): 426-441, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350361

RESUMO

Ferredoxin5 (FDX5), a minor ferredoxin protein in the alga Chlamydomonas (Chlamydomonas reinhardtii), helps maintain thylakoid membrane integrity in the dark. Sulfur (S) deprivation has been used to achieve prolonged hydrogen production in green algae. Here, we propose that FDX5 is involved in algal responses to S-deprivation as well as to the dark. Specifically, we tested the role of FDX5 in both the initial aerobic and subsequent anaerobic phases of S-deprivation. Under S-deprived conditions, absence of FDX5 causes a distinct delay in achieving anoxia by affecting photosynthetic O2 evolution, accompanied by reduced acetate uptake, lower starch accumulation, and delayed/lower fermentative metabolite production, including photohydrogen. We attribute these differences to transcriptional and/or posttranslational regulation of acetyl-CoA synthetase and ADP-Glc pyrophosphorylase, and increased stability of the PSII D1 protein. Interestingly, increased levels of FDX2 and FDX1 were observed in the mutant under oxic, S-replete conditions, strengthening our previously proposed hypothesis that other ferredoxins compensate in response to a lack of FDX5. Taken together, the results of our omics and pull-down experiments confirmed biochemical and physiological results, suggesting that FDX5 may have other effects on Chlamydomonas metabolism through its interaction with multiple redox partners.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Enxofre/metabolismo , Chlamydomonas reinhardtii/genética , Clorofila/metabolismo , Fermentação , Ferredoxinas/genética , Expressão Gênica , Metaboloma , Oxigênio/metabolismo , Amido/metabolismo
5.
Plant Cell ; 24(2): 692-707, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22353371

RESUMO

Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H(2) production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H(2) production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.


Assuntos
Acetiltransferases/metabolismo , Álcool Desidrogenase/metabolismo , Chlamydomonas reinhardtii/metabolismo , Fermentação , Acetiltransferases/genética , Álcool Desidrogenase/genética , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Etanol/metabolismo , Formiatos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Oxirredução , Ácido Pirúvico/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22434909

RESUMO

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Assuntos
Basidiomycota/genética , Genômica , Lignina/metabolismo , Basidiomycota/classificação , Hidrólise , Dados de Sequência Molecular , Oxirredução , Filogenia , Especificidade da Espécie
7.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045686

RESUMO

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Assuntos
Adaptação Fisiológica/genética , Agaricus/genética , Ecologia , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiologia , Evolução Molecular , Lignina/metabolismo
8.
J Proteome Res ; 13(12): 5431-51, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25333711

RESUMO

Chlamydomonas reinhardtii is well adapted to survive under different environmental conditions due to the unique flexibility of its metabolism. Here we report metabolic pathways that are active during acclimation to anoxia, but were previously not thoroughly studied under dark, anoxic H2-producing conditions in this model green alga. Proteomic analyses, using 2D-differential in-gel electrophoresis in combination with shotgun mass fingerprinting, revealed increased levels of proteins involved in the glycolytic pathway downstream of 3-phosphoglycerate, the glyoxylate pathway, and steps of the tricarboxylic acid (TCA) reactions. Upregulation of the enzyme, isocitrate lyase (ICL), was observed, which was accompanied by increased intracellular succinate levels, suggesting the functioning of glyoxylate pathway reactions. The ICL-inhibitor study revealed presence of reverse TCA reactions under these conditions. Contributions of the serine-isocitrate lyase pathway, glycine cleavage system, and c1-THF/serine hydroxymethyltransferase pathway in the acclimation to dark anoxia were found. We also observed increased levels of amino acids (AAs) suggesting nitrogen reorganization in the form of de novo AA biosynthesis during anoxia. Overall, novel routes for reductant utilization, in combination with redistribution of carbon and nitrogen, are used by this alga during acclimation to O2 deprivation in the dark.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Perfilação da Expressão Gênica/métodos , Hidrogênio/metabolismo , Metabolômica/métodos , Proteômica/métodos , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Aminoácidos/metabolismo , Anaerobiose , Western Blotting , Carbono/metabolismo , Escuridão , Eletroforese em Gel Bidimensional , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Metaboloma , Nitrogênio/metabolismo , Proteoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Microorganisms ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399671

RESUMO

Microorganisms colonizing modern water-based metalworking fluids (MWFs) have been implicated in various occupational respiratory health hazards to machinists. An understanding of the exposure risks from specific microbial groups/genera/species (pathogenic or allergenic) and their endotoxins and the need for strategies for effective, timely fluid management warrant real-time extended tracking of the establishment of microbial diversity and the prevailing fluid-related factors. In the current study, the microbial community composition, succession, and dynamics of a freshly recharged industrial semi-synthetic MWF operation was tracked in real-time over a period of 50 weeks, using a combination of microbiological and molecular approaches. Substantial initial bacterial count (both viable and non-viable) even in the freshly recharged MWF pointed to the inefficiency of the dumping, cleaning, and recharge (DCR) process. Subsequent temporal analysis using optimized targeted genus/group-specific qPCR confirmed the presence of Pseudomonads, Enterics, Legionellae, Mycobacteria (M. immunogenum), Actinomycetes, and Fungi. In contrast, selective culturing using commercial culture media yielded non-specific isolates and collectively revealed Gram-negative (13 genera representing 19 isolates) and Gram-positive (2 genera representing 6 isolates) bacteria and fungi but not mycobacteria. Citrobacter sp. and Bacillus cereus represented the most frequent Gram-negative and Gram-positive isolates, respectively, across different media and Nectria haematococca isolation as the first evidence of this fungal pathogen colonizing semi-synthetic MWF. Unbiased PCR-DGGE analysis revealed a more diverse whole community composition revealing 22 bacterial phylotypes and their succession. Surges in the endotoxin level coincided with the spikes in Gram-negative bacterial population and biocide additions. Taken together, the results showed that semi-synthetic MWF is conducive for the growth of a highly diverse microbial community including potential bacterial and fungal pathogens, the current DCR practices are inefficient in combating microbial reestablishment, and the practice of periodic biocide additions facilitates the build-up of endotoxins and non-viable bacterial population.

10.
Fungal Genet Biol ; 55: 22-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583597

RESUMO

The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented.


Assuntos
Agaricus/enzimologia , Agaricus/genética , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Oxirredutases/genética , Biotransformação , Biologia Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Variação Genética , Genoma Fúngico , Oxirredutases/metabolismo
11.
Plant Physiol ; 158(3): 1293-305, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22271746

RESUMO

The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO(2) was significantly reduced, but fermentative H(2) production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth.


Assuntos
Álcool Desidrogenase/metabolismo , Chlamydomonas reinhardtii/metabolismo , Glicerol/metabolismo , Proteínas de Plantas/metabolismo , Acetato Quinase/genética , Acetato Quinase/metabolismo , Acetatos/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/fisiologia , Anaerobiose , Western Blotting , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Etanol/metabolismo , Fermentação , Formiatos/metabolismo , Genes de Plantas , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Metaboloma , NAD/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Piruvato Sintase/metabolismo , Transcrição Gênica
12.
Front Bioeng Biotechnol ; 11: 1162745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706077

RESUMO

Rising global greenhouse gas emissions and the impacts of resultant climate change necessitate development and deployment of carbon capture and conversion technologies. Amongst the myriad of bio-based conversion approaches under evaluation, a formate bio-economy has recently been proposed, wherein CO2-derived formate serves as a substrate for concurrent carbon and energy delivery to microbial systems. To date, this approach has been explored in chemolithotrophic and heterotrophic organisms via native or engineered formatotrophy. However, utilization of this concept in phototrophic organisms has yet to be reported. Herein, we have taken the first steps to establish formate utilization in Picochlorum renovo, a recently characterized eukaryotic microalga with facile genetic tools and promising applied biotechnology traits. Plastidial heterologous expression of a formate dehydrogenase (FDH) enabled P. renovo growth on formate as a carbon and energy source. Further, FDH expression enhanced cultivation capacity on ambient CO2, underscoring the potential for bypass of conventional CO2 capture and concentration limitations. This work establishes a photoformatotrophic cultivation regime that leverages light energy-driven formate utilization. The resultant photosynthetic formate platform has widespread implications for applied phototrophic cultivation systems and the bio-economy at large.

13.
Proc Natl Acad Sci U S A ; 106(6): 1954-9, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19193860

RESUMO

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


Assuntos
Perfilação da Expressão Gênica , Genoma Fúngico , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Polyporales/genética , Sequência de Bases , Evolução Biológica , Celulases , Enzimas/genética , Glicosídeo Hidrolases , Dados de Sequência Molecular , Oxirredutases , Polyporales/metabolismo , Madeira/metabolismo
14.
New Phytol ; 190(2): 279-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21563367

RESUMO

Many microbes in the soil environment experience micro-oxic or anoxic conditions for much of the late afternoon and night, which inhibit or prevent respiratory metabolism. To sustain the production of energy and maintain vital cellular processes during the night, organisms have developed numerous pathways for fermentative metabolism. This review discusses fermentation pathways identified for the soil-dwelling model alga Chlamydomonas reinhardtii, its ability to produce molecular hydrogen under anoxic conditions through the activity of hydrogenases, and the molecular flexibility associated with fermentative metabolism that has only recently been revealed through the analysis of specific mutant strains.


Assuntos
Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Hidrogênio/metabolismo , Anaerobiose , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Fermentação , Hidrogenase/química , Hidrogenase/metabolismo , Mutação/genética
15.
Biochem Biophys Res Commun ; 399(4): 492-7, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20674550

RESUMO

Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO(2)) the recalcitrant fused-ring high molecular weight (4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1-Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3-5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493-547 aa) are structurally diverse and novel considering their low overall homology (12-23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Phanerochaete/enzimologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Catálise , Sistema Enzimático do Citocromo P-450/genética , Genoma Fúngico , Estudo de Associação Genômica Ampla , Oxigenases de Função Mista/genética , Oxirredução , Phanerochaete/genética , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
16.
Curr Microbiol ; 61(4): 306-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20221604

RESUMO

With an aim to understand the cytochrome P450 enzyme system in the white rot fungus Phanerochaete chrysosporium, here we report molecular characterization of its P450 redox proteins including the primary P450 oxidoreductase (POR) and two alternate P450 redox proteins cytochrome b5 (cyt b5) and cytochrome b5 reductase (cyt b5r) in terms of transcriptional regulation and heterologous expression. The transcript abundance followed the order POR > cyt b5r > cyt b5. Interestingly, the three genes showed an overall higher expression in the defined carbon-limited cultures with low nitrogen (LN) or high nitrogen (HN) versus the carbon-rich malt extract (ME) cultures. cDNA cloning and analysis revealed the following deduced protein characteristics: cyt b5 (238 amino acids, 25.38 kDa) and cyt b5r (321 amino acids, 35.52 kDa). Phylogenetic analysis revealed that the cloned cyt b5 belongs to a novel class of fungal cyt b5-like proteins. The two proteins cyt b5 and cyt b5r were heterologously expressed in E. coli and purified using affinity-based purification in an active form. The POR was heterologously expressed in Saccharomyces cerevisiae and was also purified in active form as evidenced by its cytochrome c reduction activity. This is the first report on cloning, heterologous expression, and purification of the alternate redox proteins cyt b5 and cyt b5r in E. coli and on yeast expression of POR from this model white rot fungus.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas , Phanerochaete/enzimologia , Phanerochaete/genética , Carbono , Clonagem Molecular , Meios de Cultura , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/isolamento & purificação , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/genética , Citocromos b5/isolamento & purificação , Citocromos b5/metabolismo , DNA Complementar , Poluentes Ambientais/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Duplicação Gênica , Expressão Gênica , Genoma Fúngico , Lignina/metabolismo , Dados de Sequência Molecular , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nitrogênio , Oxirredução , Phanerochaete/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
17.
Biotechnol Biofuels ; 13(1): 186, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33292448

RESUMO

BACKGROUND: Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS: Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS: This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.

18.
Appl Environ Microbiol ; 75(17): 5570-80, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542331

RESUMO

The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.


Assuntos
Disruptores Endócrinos/metabolismo , Oxigenases de Função Mista/metabolismo , Phanerochaete/metabolismo , Fenóis/metabolismo , Meios de Cultura/química , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/genética , Análise de Sequência com Séries de Oligonucleotídeos , Butóxido de Piperonila/farmacologia , Regulação para Cima
19.
Nat Commun ; 9(1): 1186, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567941

RESUMO

Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure-activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement is mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Penicillium/enzimologia , Trichoderma/enzimologia , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Cinética , Simulação de Dinâmica Molecular , Penicillium/química , Penicillium/genética , Conformação Proteica , Engenharia de Proteínas , Trichoderma/química , Trichoderma/genética
20.
Biotechnol Biofuels ; 10: 34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184247

RESUMO

BACKGROUND: The industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenable marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a "ribosomal skip" generating two (or more) independent gene products. When the 2A peptide is translated, the "skip" occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein. RESULTS: Co-expression of Cel7A and eGFP via the FMDV 2A peptide sequence resulted in successful expression of both test proteins in T. reesei. Separation of these two polypeptides via the modified 2A peptide was ~100% efficient. The Cel7A was efficiently secreted, whereas the eGFP remained intracellular. Both proteins were expressed when cloned in either order, i.e., Cel7A-2A-eGFP (C2G) or eGFP-2A-Cel7A (G2C); however, eGFP expression and/or functionality were dependent upon the order of transcription. Specifically, expression of Cel7A was linked to eGFP expression in the C2G orientation, whereas expression of Cel7A could not be reliably correlated to eGFP fluorescence in the G2C construct. Whereas eGFP stability and/or fluorescence were affected by gene order, Cel7A was expressed, secreted, and exhibited the expected functionality in both the G2C and C2G orientations. CONCLUSIONS: We have successfully demonstrated that two structurally unrelated proteins can be expressed in T. reesei using the FMDV 2A peptide approach; however, the order of the genes can be important. The addition of a single proline to the N terminus of eGFP in the C2G orientation did not appear to affect fluorescence, which correlated well with Cel7A expression. The addition of 21 amino acids to the C terminus of eGFP in the G2C orientation, however, appeared to severely reduce fluorescence and/or stability, which could not be linked with Cel7A expression. The molecular biology tool that we have implemented in this study will provide an efficient strategy to test the expression of heterologous proteins in T. reesei, while also providing a novel platform for developing this fungus as an efficient multi-protein-expressing host using a single polycistronic gene expression cassette. An additional advantage of this system is that the co-expressed proteins can be theoretically produced at equimolar ratios, as (A) they all originate from a single transcript and (B) unlike internal ribosome entry site (IRES)-mediated polycistronic expression, each cistron should be translated equimolarly as there is no ribosomal dissociation or reloading between cistrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA