RESUMO
Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.
Assuntos
Carbono , Metabolômica , Nitrogênio , Folhas de Planta , Taxus , Taxus/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Folhas de Planta/metabolismo , Casca de Planta/metabolismo , Casca de Planta/químicaRESUMO
Manipulating materials of different dimensions into heterogeneous nanofiltration membranes with unique physicochemical properties and molecular sieving channels provides an effective way for accurate and fast molecular separation. Here we introduce a heterogeneous structure hybrid connection strategy to fabricate biodegradable wood-based covalent organic framework (COF) composite membranes. As a proof of concept, 3D Picea jezoensis (Siebold & Zucc.) Carrière was selected as the substrate of the membrane and in situ growth of 2D iCOF selective layers. Effective modulation of iCOF layers by 1D sulfonated polyaryletherketone (SPEEK-Na) using the "needle and thread" method. The rearrangement of the above multidimensional materials formed charge-regulated properties of laminar nano-channels and smooth hydrophilic contact area, thereby endowing specific molecular transport pathways and sieving capability for efficient dye/salt separation under ultra-low pressure of 0.5 bar. The wood-based heterostructured membranes exhibited high dye rejection (>97 %), low salt rejection (<10 %), and high permeance (172.34 L m-2 h-1 bar-1), which is superior to many reported dye/salt separation membrane materials. In addition, the system exhibited a certain degree of operational stability, good antifouling, and soil biodegradability. Overall, this work enables the design and fabrication of heterostructured separation membranes to be obtained from nature and used in nature, resulting in efficient and sustainable water purification applications.
RESUMO
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.