Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Adv Exp Med Biol ; 1024: 91-110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28921466

RESUMO

Histone deacetylases (HDACs) are an emerging class of molecules involved in the epigenetic regulation of innate immune responses through Toll-like receptor (TLR) and interferon (IFN) signaling pathways. HDACs are also key drivers of inflammatory diseases via epigenetic regulation through chromatin DNA and histone modification by methylation and acetylation, among other mechanisms, which control innate immune cell gene expression. Importantly, these epigenetic changes are reversible, and HDACs may also be targeted by small-molecule HDAC inhibitors, which have been used in clinical settings for cancer therapy. Here, we highlight HDACs as strong therapeutic molecules and explore HDAC-induced mechanisms regulating innate immune responses and inflammatory cytokine control, with the goal of developing personalized medicine for the treatment of human diseases, including inflammatory diseases and immune disorders. Currently, this novel class of immunomodulatory therapeutics is being evaluated in the laboratory, in preclinical models, and in the clinic.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Histona Desacetilases/metabolismo , Imunidade Inata , Inflamação , Citocinas/genética , Citocinas/metabolismo , Histona Desacetilases/genética , Humanos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
2.
Immunol Cell Biol ; 90(1): 23-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083527

RESUMO

Histone deacetylase inhibitors (HDACi) are an emerging class of novel anti-cancer drugs that cause growth arrest, differentiation and apoptosis of tumor cells. In addition, many advances have been made in understanding the immunoregulation of Toll-like receptors, NOD-like receptors and interferons that have recently generated new momentum for the study of HDACi in immunity as a whole, and in the regulation of these innate signaling pathways specifically. HDACi have shown promise as new anti-inflammatory and immunosuppressant agents. They have also demonstrated great potency and relative selectivity in various human/animal models of inflammatory diseases. This review focuses on recent progress and the current state of HDACi knowledge, as well as the molecular mechanisms and therapeutic potential of HDACi for the treatment of inflammatory diseases and cancers.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Modelos Imunológicos
3.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34043590

RESUMO

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks. We tested whether rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only 1 rare pLOF mutation across these genes among 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We found no evidence of association of rare LOF variants in the 13 candidate genes with severe COVID-19 outcomes.


Assuntos
COVID-19/genética , COVID-19/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Mutação com Perda de Função , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Fator Regulador 7 de Interferon/genética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Receptor 3 Toll-Like/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Adulto Jovem
4.
medRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33398295

RESUMO

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks. We then tested if rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only one rare pLOF mutation across these genes amongst 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We find no evidence of association of rare loss-of-function variants in the proposed 13 candidate genes with severe COVID-19 outcomes.

5.
Front Oncol ; 2: 74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22822476

RESUMO

The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA