Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608283

RESUMO

Emerging research organisms enable the study of biology that cannot be addressed using classical 'model' organisms. New data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-seq to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis and limb development. In addition, we use short- and long-read RNA-seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Cromatina , Desenvolvimento Embrionário , Evolução Molecular , Genoma , Sequências Reguladoras de Ácido Nucleico/genética
2.
Evodevo ; 14(1): 9, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149716

RESUMO

BACKGROUND: Transcriptomic methods can be used to elucidate genes and pathways responsible for phenotypic differences between populations. Asellus aquaticus is a freshwater isopod crustacean with surface- and cave-dwelling ecomorphs that differ greatly in multiple phenotypes including pigmentation and eye size. Multiple genetic resources have been generated for this species, but the genes and pathways responsible for cave-specific characteristics have not yet been identified. Our goal was to generate transcriptomic resources in tandem with taking advantage of the species' ability to interbreed and generate hybrid individuals. RESULTS: We generated transcriptomes of the Rakov Skocjan surface population and the Rak Channel of Planina Cave population that combined Illumina short-read assemblies and PacBio Iso-seq long-read sequences. We investigated differential expression at two different embryonic time points as well as allele-specific expression of F1 hybrids between cave and surface individuals. RNAseq of F2 hybrids, as well as genotyping of a backcross, allowed for positional information of multiple candidate genes from the differential expression and allele-specific analyses. CONCLUSIONS: As expected, genes involved in phototransduction and ommochrome synthesis were under-expressed in the cave samples as compared to the surface samples. Allele-specific expression analysis of F1 hybrids identified genes with cave-biased (cave allele has higher mRNA levels than the surface allele) and surface-biased expression (surface allele has higher mRNA levels than the cave allele). RNAseq of F2 hybrids allowed for multiple genes to be placed to previously mapped genomic regions responsible for eye and pigmentation phenotypes. In the future, these transcriptomic resources will guide prioritization of candidates for functional analysis.

3.
Wiley Interdiscip Rev Dev Biol ; 8(5): e355, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31183976

RESUMO

Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.


Assuntos
Anfípodes/embriologia , Evolução Biológica , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Regeneração , Anfípodes/genética , Animais , Genoma
4.
Genes (Basel) ; 11(1)2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905778

RESUMO

Cave animals are a fascinating group of species often demonstrating characteristics including reduced eyes and pigmentation, metabolic efficiency, and enhanced sensory systems. Asellus aquaticus, an isopod crustacean, is an emerging model for cave biology. Cave and surface forms of this species differ in many characteristics, including eye size, pigmentation, and antennal length. Existing resources for this species include a linkage map, mapped regions responsible for eye and pigmentation traits, sequenced adult transcriptomes, and comparative embryological descriptions of the surface and cave forms. Our ultimate goal is to identify genes and mutations responsible for the differences between the cave and surface forms. To advance this goal, we decided to use a transcriptomic approach. Because many of these changes first appear during embryonic development, we sequenced embryonic transcriptomes of cave, surface, and hybrid individuals at the stage when eyes and pigment become evident in the surface form. We generated a cave, a surface, a hybrid, and an integrated transcriptome to identify differentially expressed genes in the cave and surface forms. Additionally, we identified genes with allele-specific expression in hybrid individuals. These embryonic transcriptomes are an important resource to assist in our ultimate goal of determining the genetic underpinnings of the divergence between the cave and surface forms.


Assuntos
Proteínas de Artrópodes/genética , Perfilação da Expressão Gênica/veterinária , Isópodes/crescimento & desenvolvimento , Animais , Cavernas , Ecossistema , Regulação da Expressão Gênica no Desenvolvimento , Isópodes/classificação , Isópodes/genética , Mutação , Análise de Sequência de RNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA