Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.200
Filtrar
1.
Cell ; 177(2): 326-338.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879787

RESUMO

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.


Assuntos
Troca Genética/genética , Troca Genética/fisiologia , Animais , Núcleo Celular , Segregação de Cromossomos , Cromossomos/genética , Cromossomos/fisiologia , Simulação por Computador , Feminino , Genética Populacional/métodos , Recombinação Homóloga/genética , Humanos , Solanum lycopersicum/genética , Masculino , Meiose/genética , Recombinação Genética/genética , Complexo Sinaptonêmico
2.
Immunity ; 57(3): 462-477.e9, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430908

RESUMO

Inducible nucleosome remodeling at hundreds of latent enhancers and several promoters shapes the transcriptional response to Toll-like receptor 4 (TLR4) signaling in macrophages. We aimed to define the identities of the transcription factors that promote TLR-induced remodeling. An analysis strategy based on ATAC-seq and single-cell ATAC-seq that enriched for genomic regions most likely to undergo remodeling revealed that the transcription factor nuclear factor κB (NF-κB) bound to all high-confidence peaks marking remodeling during the primary response to the TLR4 ligand, lipid A. Deletion of NF-κB subunits RelA and c-Rel resulted in the loss of remodeling at high-confidence ATAC-seq peaks, and CRISPR-Cas9 mutagenesis of NF-κB-binding motifs impaired remodeling. Remodeling selectivity at defined regions was conferred by collaboration with other inducible factors, including IRF3- and MAP-kinase-induced factors. Thus, NF-κB is unique among TLR4-activated transcription factors in its broad contribution to inducible nucleosome remodeling, alongside its ability to activate poised enhancers and promoters assembled into open chromatin.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Nucleossomos , Transdução de Sinais , Regulação da Expressão Gênica , Fator de Transcrição RelA/metabolismo
3.
Cell ; 161(5): 1152-1163, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25981666

RESUMO

Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Ácidos Graxos/metabolismo , Acil-CoA Desidrogenase/química , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
4.
Genes Dev ; 35(15-16): 1175-1189, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301767

RESUMO

Knowledge of how Mediator and TFIID cross-talk contributes to promoter-enhancer (P-E) communication is important for elucidating the mechanism of enhancer function. We conducted an shRNA knockdown screen in murine embryonic stem cells to identify the functional overlap between Mediator and TFIID subunits on gene expression. Auxin-inducible degrons were constructed for TAF12 and MED4, the subunits eliciting the greatest overlap. Degradation of TAF12 led to a dramatic genome-wide decrease in gene expression accompanied by destruction of TFIID, loss of Pol II preinitiation complex (PIC) at promoters, and significantly decreased Mediator binding to promoters and enhancers. Interestingly, loss of the PIC elicited only a mild effect on P-E looping by promoter capture Hi-C (PCHi-C). Degradation of MED4 had a minor effect on Mediator integrity but led to a consistent twofold loss in gene expression, decreased binding of Pol II to Mediator, and decreased recruitment of Pol II to the promoters, but had no effect on the other PIC components. PCHi-C revealed no consistent effect of MED4 degradation on P-E looping. Collectively, our data show that TAF12 and MED4 contribute mechanistically in different ways to P-E communication but neither factor appears to directly control P-E looping, thereby dissociating P-E communication from physical looping.


Assuntos
RNA Polimerase II , Fator de Transcrição TFIID , Animais , Complexo Mediador/genética , Complexo Mediador/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição TFIID/genética , Transcrição Gênica
5.
Cell ; 149(6): 1221-32, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682245

RESUMO

When replication forks stall at damaged bases or upon nucleotide depletion, the intra-S phase checkpoint ensures they are stabilized and can restart. In intra-S checkpoint-deficient budding yeast, stalling forks collapse, and ∼10% form pathogenic chicken foot structures, contributing to incomplete replication and cell death (Lopes et al., 2001; Sogo et al., 2002; Tercero and Diffley, 2001). Using fission yeast, we report that the Cds1(Chk2) effector kinase targets Dna2 on S220 to regulate, both in vivo and in vitro, Dna2 association with stalled replication forks in chromatin. We demonstrate that Dna2-S220 phosphorylation and the nuclease activity of Dna2 are required to prevent fork reversal. Consistent with this, Dna2 can efficiently cleave obligate precursors of fork regression-regressed leading or lagging strands-on model replication forks. We propose that Dna2 cleavage of regressed nascent strands prevents fork reversal and thus stabilizes stalled forks to maintain genome stability during replication stress.


Assuntos
Replicação do DNA , Endonucleases Flap/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Quinase do Ponto de Checagem 2 , Epistasia Genética , Instabilidade Genômica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/genética
6.
Nature ; 594(7864): 589-593, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135509

RESUMO

The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.


Assuntos
Receptores de Glutamato Metabotrópico/química , Microscopia Crioeletrônica , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína
7.
Mol Cell ; 73(2): 250-263.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30527662

RESUMO

Metazoan chromosomes are sequentially partitioned into topologically associating domains (TADs) and then into smaller sub-domains. One class of sub-domains, insulated neighborhoods, are proposed to spatially sequester and insulate the enclosed genes through self-association and chromatin looping. However, it has not been determined functionally whether promoter-enhancer interactions and gene regulation are broadly restricted to within these loops. Here, we employed published datasets from murine embryonic stem cells (mESCs) to identify insulated neighborhoods that confine promoter-enhancer interactions and demarcate gene regulatory regions. To directly address the functionality of these regions, we depleted estrogen-related receptor ß (Esrrb), which binds the Mediator co-activator complex, to impair enhancers of genes within 222 insulated neighborhoods without causing mESC differentiation. Esrrb depletion reduces Mediator binding, promoter-enhancer looping, and expression of both nascent RNA and mRNA within the insulated neighborhoods without significantly affecting the flanking genes. Our data indicate that insulated neighborhoods represent functional regulons in mammalian genomes.


Assuntos
Cromossomos de Mamíferos , Elementos Facilitadores Genéticos , Elementos Isolantes , Células-Tronco Embrionárias Murinas/fisiologia , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Bases de Dados Genéticas , Regulação para Baixo , Camundongos , Ligação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Coesinas
8.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010139

RESUMO

Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.


Assuntos
Regeneração , Cicatrização , Animais
9.
Nat Methods ; 20(2): 276-283, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646897

RESUMO

Cryo-electron tomography (cryo-ET) has become a powerful approach to study the high-resolution structure of cellular macromolecular machines in situ. However, the current correlative cryo-fluorescence and electron microscopy lacks sufficient accuracy and efficiency to precisely prepare cryo-lamellae of target locations for subsequent cryo-ET. Here we describe a precise cryogenic fabrication system, ELI-TriScope, which sets electron (E), light (L) and ion (I) beams at the same focal point to achieve accurate and efficient preparation of a target cryo-lamella. ELI-TriScope uses a commercial dual-beam scanning electron microscope modified to incorporate a cryo-holder-based transfer system and embed an optical imaging system just underneath the vitrified specimen. Cryo-focused ion beam milling can be accurately navigated by monitoring the real-time fluorescence signal of the target molecule. Using ELI-TriScope, we prepared a batch of cryo-lamellae of HeLa cells targeting the centrosome with a success rate of ~91% and discovered new in situ structural features of the human centrosome by cryo-ET.


Assuntos
Tomografia com Microscopia Eletrônica , Elétrons , Humanos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Células HeLa , Substâncias Macromoleculares
10.
J Biol Chem ; 300(6): 107390, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777146

RESUMO

SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.

11.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588208

RESUMO

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Assuntos
MicroRNAs , Poli A , Animais , Haploidia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Espermátides/metabolismo
12.
Mol Ther ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822524

RESUMO

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

13.
Mol Cell ; 67(4): 594-607.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28735899

RESUMO

Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.


Assuntos
Adenosina Trifosfatases/metabolismo , Células-Tronco Embrionárias/enzimologia , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA , Eucromatina/genética , Eucromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genótipo , Heterocromatina/genética , Heterocromatina/metabolismo , Fenótipo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Transfecção
14.
Semin Cell Dev Biol ; 121: 53-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33867214

RESUMO

In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.


Assuntos
Hidrazinas/uso terapêutico , Indazóis/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Espermatogênese/imunologia , Animais , Humanos , Hidrazinas/farmacologia , Indazóis/farmacologia , Masculino , Transdução de Sinais
15.
Semin Cell Dev Biol ; 121: 40-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33879391

RESUMO

In adult rat testes, the basement membrane is structurally constituted by laminin and collagen chains that lay adjacent to the blood-testis barrier (BTB). It plays a crucial scaffolding role to support spermatogenesis. On the other hand, laminin-333 comprised of laminin-α3/ß3/γ3 at the apical ES (ectoplasmic specialization, a testis-specific cell-cell adherens junction at the Sertoli cell-step 8-19 spermatid interface) expressed by spermatids serves as a unique cell adhesion protein that forms an adhesion complex with α6ß1-integrin expressed by Sertoli cells to support spermiogenesis. Emerging evidence has shown that biologically active fragments are derived from basement membrane and apical ES laminin chains through proteolytic cleavage mediated by matrix metalloproteinase 9 (MMP9) and MMP2, respectively. Two of these laminin bioactive fragments: one from the basement membrane laminin-α2 chain called LG3/4/5-peptide, and one from the apical ES laminin-γ3 chain known as F5-peptide, are potent regulators that modify cell adhesion function at the Sertoli-spermatid interface (i.e., apical ES) but also at the Sertoli cell-cell interface designated basal ES at the blood-testis barrier (BTB) with contrasting effects. These findings not only highlight the physiological significance of these bioactive peptides that create a local regulatory network to support spermatogenesis, they also open a unique area of research. For instance, it is likely that several other bioactive peptides remain to be identified. These bioactive peptides including their downstream signaling proteins and cascades should be studied collectively in future investigations to elucidate the underlying mechanism(s) by which they coordinate with each other to maintain spermatogenesis. This is the goal of this review.


Assuntos
Redes Reguladoras de Genes/genética , Laminina/imunologia , Espermatogênese/imunologia , Testículo/imunologia , Animais , Masculino , Camundongos , Ratos
16.
Semin Cell Dev Biol ; 121: 125-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325997

RESUMO

Studies have demonstrated that biologically active fragments are generated from the basement membrane and the Sertoli cell-spermatid adhesion site known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction) in the rat testis. These bioactive fragments or peptides are produced locally across the seminiferous epithelium through proteolytic cleavage of constituent proteins at the basement membrane and the apical ES. Studies have shown that they are being used to modulate and coordinate cellular functions across the seminiferous epithelium during different stages of the epithelial cycle of spermatogenesis. In this review, we briefly summarize recent findings based on studies using rat testes as a study model regarding the role of these bioactive peptides that serve as a local regulatory network to support spermatogenesis. We also used scRNA-Seq transcriptome datasets in the public domain for OA (obstructive azoospermia) and NAO (non-obstructive azoospermia) human testes versus testes from normal men for analysis in this review. It was shown that there are differential expression of different collagen chains and laminin chains in these testes, suggesting the possibility of a similar local regulatory network in the human testis to support spermatogenesis, and the possible disruption of such network in men is associated with OA and/or NOA.


Assuntos
Colágeno/metabolismo , Perfilação da Expressão Gênica/métodos , Laminina/metabolismo , Análise de Célula Única/métodos , Espermatogênese/genética , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
17.
Semin Cell Dev Biol ; 121: 99-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059418

RESUMO

Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Receptores da Fenciclidina/metabolismo , Espermatogênese/genética , Testículo/fisiologia , Animais , Drosophila , Masculino
18.
Artigo em Inglês | MEDLINE | ID: mdl-38826136

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a family of "forever chemicals" including PFOS (perfluorooctane sulfonate). These toxic chemicals do not break down in the environment nor in our bodies. In the human body, PFOS and PFOA (perfluoroctanoic acid) have a half-life (T1/2) of about 4-5 years so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the U.S. in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS-induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.

19.
Hum Mol Genet ; 31(3): 321-333, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33438010

RESUMO

During human spermatogenesis, germ cells undergo dynamic changes in chromatin organization/re-packaging and in transcriptomes. In order to better understand the underlying mechanism(s), scATAC-Seq of 5376 testicular cells from 3 normal men were performed. Data were analyzed in parallel with the scRNA-Seq data of human testicular cells. In all, 10 germ cell types associated with spermatogenesis and 6 testicular somatic cell types were identified, along with 142 024 peaks located in promoter, genebody and CpG Island. We had examined chromatin accessibility of all chromosomes, with chromosomes 19 and 17 emerged as the leading chromosomes that displayed high chromatin accessibility. In accessible chromatin regions, transcription factor-binding sites were identified and specific motifs with high frequencies at different spermatogenesis stages were detected, including CTCF, BORIS, NFY, DMRT6, EN1, ISL1 and GLI3. Two most remarkable observations were noted. First, TLE3 was specifically expressed in differentiating spermatogonia. Second, PFN4 was found to be involved in actin cytoskeletal organization during meiosis. More important, unique regions upstream of PFN4 and TLE3 were shown to display high accessibility, illustrating their significance in supporting human spermatogenesis.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Cromatina/genética , Cromatina/metabolismo , Humanos , Masculino , Meiose , Espermatogênese/genética , Espermatogônias/metabolismo
20.
Mol Med ; 30(1): 23, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317106

RESUMO

BACKGROUND: Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD: Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT: Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved ß cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION: Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Camundongos Endogâmicos NOD , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Células Th17 , Fosfatidilinositol 3-Quinases , Células Th1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA