Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 145(6): 3682-3695, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727591

RESUMO

With easily accessible and operator-friendly reagents, shelf-stable ortho-methoxycarbonylethynylphenyl thioglycosides were efficiently prepared. Based on these MCEPT glycoside donors, a novel glycosylation protocol featuring mild and catalytic promotion conditions with Au(I) or Cu(II) complexes, expanded substrate scope encompassing challenging donors and acceptors and clinically used pharmaceuticals, and versatility in various strategies for highly efficient synthesis of glycosides has been established. The practicality of the MCEPT glycosylation protocol was fully exhibited by highly efficient and scalable synthesis of surface polysaccharide subunits of Acinetobacter baumannii via latent-active, reagent-controlled divergent orthogonal one-pot and orthogonal one-pot strategies. The underlying reaction mechanism was investigated systematically through control reactions, leading to the isolation and characterization of the vital catalyst species in MCEPT glycosylation, the benzothiophen-3-yl-gold(I) complex. Based on the results obtained both from control reactions and from studies leading to the glycosylation protocol establishment, an operative mechanism was proposed and the effect of the vital catalyst species reactivity on the results of metal-catalyzed alkyne-containing donor-involved glycosylation was disclosed. Moreover, the mechanism for C-glycosylation side product formation from ortho-(substituted)ethynylphenyl thioglycoside donors with electron-donating substituents was also illuminated.

2.
Angew Chem Int Ed Engl ; 62(33): e202306971, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37327196

RESUMO

Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved ß-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.


Assuntos
Carboidratos , Antígenos O , Antígenos O/química , Carboidratos/química , Oligossacarídeos/química , Glicosilação , Galactose
3.
J Org Chem ; 85(17): 11449-11464, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786627

RESUMO

By turning on or switching off the directing effect of the C3-OH-located o-diphenylphosphanylbenzoyl (o-DPPB) group in glycals, a reagent-controlled protocol for divergent and regio- and stereoselective syntheses of C-glycosides has been established. In particular, the silence of the directing effect of o-DPPB was achieved by the introduction of a ZnCl2 additive, which is operationally simple and efficient. The flexibility of the novel protocol was exhibited not only by the easy access of both α- and ß-C-glycosides but also by the versatility of the obtained formal Ferrier rearrangement products, which can be easily derivatized to various C-glycoside analogues owing to the embedded multifunctionalities.

4.
J Org Chem ; 85(24): 15857-15871, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32281375

RESUMO

The total synthesis of rebaudioside S, a minor steviol glycoside from the leaves of Stevia rebaudiana, was investigated via a modular strategy, culminating not only in the first and highly efficient synthesis of Reb-S and analogues thereof but also in the revision of the originally proposed structure. The modular strategy dictated the application of C2-branched disaccharide Yu donors to forge C-13 steviol glycosidic linkages, posing considerable challenges in stereoselectivity control. Through systematic investigations, the effect of the internal glycosidic linkage configuration on the glycosylation stereoselectivity of 1,2-linked disaccharide donors was disclosed, and the intensified solvent effect by the 4,6-O-benzylidene protecting group was also observed with glucosyl donors. Through the orchestrated application of these favorable effects, the stereoselectivity problems were exquisitely tackled.

5.
Org Biomol Chem ; 18(43): 8834-8838, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103171

RESUMO

An efficient and practical approach for the synthesis of 3-indolyl-C-Δ1,2-glycosides through a palladium-catalyzed annulation/C-glycosylation sequence of o-alkynylanilines with 1-iodoglycals has been developed. This methodology has a wide scope of substrates and gives access to 3-indolyl-C-Δ1,2-glycosides in high yields. Furthermore, the product obtained here exhibits a high utility for further transformations.

6.
J Org Chem ; 84(14): 9344-9352, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31264870

RESUMO

A convenient and straightforward synthesis of diverse 2-C-alkenyl-glycosides through a palladium-catalyzed cross-coupling reaction between 2-iodoglycals and N-tosylhydrazones has been developed. Further transformation of 2-C-branched sugars by Diels-Alder reactions provided oxadecalins in good yields.

7.
Org Biomol Chem ; 18(1): 108-126, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31799547

RESUMO

With easily available monosaccharides and steviol as starting materials, the first total synthesis of rebaudioside R with a xylosyl core in the C13-OH linked sugar chain was accomplished via two distinct approaches. The first approach features the stepwise installation of branch-sugar residues via an order of C2-OH first and then C3-OH of the xylosyl core, laying a firm foundation for the synthesis of analogues with different branch sugars, while the second route features the introduction of the C13 trisaccharide sugar chain via a convergent strategy, securing the overall synthetic efficiency. Through the synthetic study, the effect of protecting groups (PGs) at the vicinal hydroxy group on the reactivity of OH acceptors was illustrated.

8.
Angew Chem Int Ed Engl ; 58(47): 17000-17008, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31532864

RESUMO

With the picolinyl (Pic) group as a C-1 located directing group and N3 as versatile precursor for C5-NH2 , a novel 1-Pic-5-N3 thiosialyl donor was designed and synthesized, based on which a new sialylation protocol was established. In comparison to conventional sialylation methods, the new protocol exhibited obvious advantages, including excellent α-stereoselectivity in the absence of a solvent effect, broad substrate scope encompassing the challenging sialyl 8- and 9-hydroxy groups of sialic acid acceptors, flexibility in sialoside derivative synthesis, high temperature tolerance and easy scalability. In particular, the applicability to the synthesis of complex and bioactive N-glycan antennae when combined with the MPEP glycosylation protocol via the "latent-active" strategy has been shown. Mechanistically, the excellent α-stereoselectivity of the novel sialylation protocol could be attributed to the dramatic electron-withdrawing effect of the protonated Pic groups, which was supported by control reactions and DFT calculations.

9.
J Org Chem ; 83(7): 4111-4118, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504402

RESUMO

The synthesis of both enantiomers of carambolaflavone A, the antidiabetic and flavonoid C-glycoside, was achieved for the first time via a 12-longest-linear-step with 16% (l-fucose) and 11% (d-fucose) overall yields. Through the synthetic investigation, the adverse effect of 4A MS in Suzuki C-glycosylation was disclosed, the mechanism of hydrogen-bonded-phenol involved Suzuki C-glycosylation was clarified, and the authentic structure of carambolaflavone A was also determined.


Assuntos
Flavonoides/síntese química , Fucose/química , Glicosídeos/síntese química , Flavonoides/química , Glicosídeos/química , Glicosilação , Estrutura Molecular , Estereoisomerismo
10.
J Org Chem ; 83(19): 11480-11492, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30183288

RESUMO

With cheap and easily available mixtures of steviol glycosides as starting materials, a practical method for steviol acquisition has been developed, on the basis of which a facile, diversity-oriented, and economic protocol for the synthesis of structurally defined steviol glycosides was established. The novel approach is featured by the highly efficient glycosylation of sterically hindered and acid-sensitive steviol via orchestrated application of Yu glycosylation, Schmidt glycosylation, and PTC glycosylation. Hence, these high-intensity sweeteners and potential lead compounds for drug development are now readily accessible.


Assuntos
Diterpenos do Tipo Caurano/química , Glicosídeos/química , Glicosídeos/síntese química , Configuração de Carboidratos , Técnicas de Química Sintética , Modelos Moleculares
11.
J Am Chem Soc ; 139(36): 12736-12744, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28835100

RESUMO

A novel alkyne-activation-based glycosylation protocol using o-(p-methoxyphenylethynyl)phenyl (MPEP) glycoside was established. The glycosyl MPEP donors were shelf-stable and could be prepared efficiently via Sonogashira reaction from the corresponding o-iodophenyl (IP) glycosides. The outstanding stability of IP glycosides as well as their efficient transformations to MPEP glycosides dramatically facilitates the syntheses of MPEP glycosyl donors and IP glycosyl acceptors. Furthermore, they make the MPEP glycosylation protocol applicable to the latent-active oligosaccharide and glycoconjugate synthetic strategy, with IP glycosides as the latent form and MPEP glycosides as the active form, as illustrated by the highly efficient fabrication of Streptococcus pneumoniae type 3 trisaccharide. The phenolic glycoside nature of MPEP glycosides bestows on the new glycosyl donors enhanced stability compared to their thioglycoside counterparts toward activation conditions applied for glycosyl trichloroacetimidate (TCAI) and o-alkynylbenzoate (ABz) donor. Thus, MPEPs can also be utilized in the selective one-pot glycosylation strategy, as exemplified by the syntheses of oligosaccharides via successive glycosylations with glycosyl TCAI, ABz, and EPMP as donors. Despite sharing identical promotion conditions with thioglycoside donors, the odor-free starting material (IP), the stable departure structure of the leaving group (3-iodobenzofuran), and the decreased nucleophilicity of the o-MPEP glycoside help to eliminate the three major shortcomings of the thioglycoside donors (unpleasant odor of starting material, detrimental interference of the cleaved leaving group, and aglycon intra- or intermolecular migration) while maintaining the prominent features of the thioglycoside methodology, including the broad substrate scopes, the mild promotion conditions, the stability of glycosyl donors, and the versatile applications in existing glycoside synthesis strategies. Based on the experimental results, a mechanism for MPEP activation was proposed, which was supported by systematic mechanistic investigations, including trapping of active intermediates, design of a vital disarmed rhamnosyl donor, and isolation and characterization of the departure species of the leaving group.


Assuntos
Glicosídeos/química , Configuração de Carboidratos , Glicosilação
12.
J Org Chem ; 82(8): 4170-4178, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28345922

RESUMO

The first efficient synthetic approach toward four types of the cycloartane glycosides, the cycloastragenol 25-O; 3-O; 3,6-O-bis; and 3,25-O-bisglycoside, have been established, which featured the PPY-mediated, concentration-controlled acetylation and Au(I)-catalyzed Yu glycosylation. Through the synthetic investigation, the reactivity sequence of the four OHs in cycloastragenol was fixed for the first time and a detour strategy for the highly efficient removal of bulky pivaloyl protecting groups was discovered.

13.
J Org Chem ; 82(11): 5652-5662, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28504515

RESUMO

Under the effect of a catalytic amount of Au(I) complex, 4-O-(2-cyclopropylethynyl)benzoyl-(epi)-podophyllotoxins, easily prepared via dehydrative condensation between (epi)-podophyllotoxin and ortho-cyclopropylethynylbenzoic acid, could efficiently couple with a variety of nucleophiles including alcohol, phenol, aniline, and carbon nucleophiles, all to provide (epi)-podophyllotoxin derivatives. Thus, the first catalytic and lignan-activation-based approach for (epi)-podophyllotoxin derivatization was established. Based on the new methodology, as well as the judicious choice of N3, AZMB, and Cbz protecting groups, an efficient approach forward was set. NK-611, an antitumoral agent at a phase II clinical trial was established, featuring an in situ anomerization of the hemiacetal OHs in the critical condensation step. Commencing from easily available starting material, the target molecule was obtained using the longest linear sequence of six steps and a 38% overall yield.

14.
Org Biomol Chem ; 14(4): 1188-200, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26645095

RESUMO

Led by etoposide and teniposide, the synthesis of aryltetralin glycosides has been experiencing flourishing development in the past five decades. Herein, a review focusing on the total synthesis of aryltetralin glycosides is provided. The main body of this review is composed of two parts, one is the enantioselective synthesis of aryltetralin derivatives and the other one is the construction of key glycosidic linkages. In each part the contents are organised based on the different strategies or protocols applied in the original documents. The total synthesis of aryltetralin glycosides represents the developing direction of this field, and sooner or later will replace the currently applied semi-total synthesis method, using the aglycon residue acquired directly from natural sources. This account provides a comprehensive and deep insight into the field of aryltetralin glycoside synthesis for chemists who have the intention of committing themselves to the development of aryltetralin glycoside medicine.


Assuntos
Glicosídeos/síntese química , Tetra-Hidronaftalenos/síntese química , Glicosídeos/química , Conformação Molecular , Tetra-Hidronaftalenos/química
15.
Org Biomol Chem ; 14(21): 4842-7, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145917

RESUMO

Capitalizing on the Au(i)-catalyzed ortho-alkynylbenzoate glycosylation method, the first total synthesis of the proposed structure of apigenin-5-O-glycoside camellianin B was achieved, wherein three approaches, one linear and two convergent, were established, through which the synthetic structures were firmly corroborated. Meanwhile, through the synthesis of anthentic camellianin B via commercially available camellianin A, the misassigned structures of camellianins A and B were revised.


Assuntos
Apigenina/química , Flavonoides/química , Flavonoides/síntese química , Glicosídeos/química , Técnicas de Química Sintética
16.
Org Biomol Chem ; 14(4): 1221-5, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26676936

RESUMO

With glycosyl ortho-alkynylbenzoates as donors, the highly efficient glycosylation of flavonoid 5-OH which are notorious for their low reactivity due to their involvement in the formation of strong intramolecular H-bonds was achieved under the catalysis of a Au(i) complex. Thus, a series of flavonoid 5-O-glycosides, including a kaempferol 5-O-disaccharide, were synthesized with good to excellent yields.


Assuntos
Alcinos/química , Benzoatos/química , Flavonóis/síntese química , Glicosídeos/síntese química , Flavonóis/química , Glicosídeos/química , Glicosilação , Estrutura Molecular
17.
Biomed Pharmacother ; 177: 116976, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906022

RESUMO

Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.

18.
Org Lett ; 25(20): 3611-3617, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37191370

RESUMO

Herein, we describe a novel methodology for the regio- and stereoselective convergent synthesis of 2-amino-2-deoxy-dithioglycosides via one-pot relay glycosylation of 3-O-acetyl-2-nitroglucal donors. This unique organo-catalysis relay glycosylation features excellent site- and stereoselectivity, good to excellent yields, mild reaction conditions, and broad substrate scope. 2-Amino-2-deoxy-glucosides/mannosides bearing 1,3-dithio-linkages were efficiently obtained from 3-O-acetyl-2-nitroglucal donors in both stepwise and one-pot glycosylation protocols. The dithiolated O-antigen of E. coli serogroup 64 was successfully synthesized using this newly developed method.

19.
Biomed Pharmacother ; 166: 115340, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625321

RESUMO

Ginsenosides, agents extracted from an important herb (ginseng), are expected to provide new therapies for endometrium-related diseases. Based on the molecular types of ginsenosides, we reviewed the main pharmacological effects of ginsenosides against endometrium-related diseases (e.g., endometrial cancers, endometriosis, and endometritis). The mechanism of action of ginsenosides involves inducing apoptosis of endometrium-related cells, promoting autophagy of endometrium-related cells, regulating epithelial-mesenchymal transition (EMT) in endometrium-related cells, and activating the immune system to kill cells associated with endometrial diseases. We hope to provide a theoretical foundation for the treatment of endometrium-related diseases by ginsenosides.


Assuntos
Neoplasias do Endométrio , Endometriose , Ginsenosídeos , Doenças Uterinas , Feminino , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Endométrio , Neoplasias do Endométrio/tratamento farmacológico , Endometriose/tratamento farmacológico
20.
Org Lett ; 24(2): 653-657, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34967647

RESUMO

With 8-(methyltosylaminoethynyl)-1-naphthyl (MTAEN) glycoside as donors, a novel and efficient glycosylation protocol has been established. The MTAEN glycosylation protocol exhibits the merits of shelf-stable donors, mild catalytic promotion conditions, considerably extended substrate scope encompassing both free alcohols, silylated alcohols, nucleobases, primary amides, and C-type nucleophile acceptors, and applicability to various one-pot strategies for highly efficient synthesis of oligosaccharides, such as orthogonal one-pot, single-catalyst one-pot, and acceptor reactivity-controlled one-pot strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA