RESUMO
There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.
Assuntos
COVID-19/imunologia , Citocinas/imunologia , Imunidade Inata/imunologia , SARS-CoV-2/imunologia , Caracteres Sexuais , Linfócitos T/imunologia , COVID-19/sangue , COVID-19/virologia , Quimiocinas/sangue , Quimiocinas/imunologia , Estudos de Coortes , Citocinas/sangue , Progressão da Doença , Feminino , Humanos , Ativação Linfocitária , Masculino , Monócitos/imunologia , Fenótipo , Prognóstico , RNA Viral/análise , SARS-CoV-2/patogenicidade , Carga ViralRESUMO
BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.
Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Aterosclerose/patologia , Hidroxicolesteróis/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Colesterol , Inflamação/metabolismo , Camundongos KnockoutRESUMO
BACKGROUND: miRNA therapeutics have gained attention during the past decade. These oligonucleotide treatments can modulate the expression of miRNAs in vivo and could be used to correct the imbalance of gene expression found in human diseases such as obesity, metabolic syndrome, and atherosclerosis. The in vivo efficacy of current anti-miRNA technologies hindered by physiological and cellular barriers to delivery into targeted cells and the nature of miRNAs that allows one to target an entire pathway that may lead to deleterious off-target effects. For these reasons, novel targeted delivery systems to inhibit miRNAs in specific tissues will be important for developing effective therapeutic strategies for numerous diseases including atherosclerosis. METHODS: We used pH low-insertion peptide (pHLIP) constructs as vehicles to deliver microRNA-33-5p (miR-33) antisense oligonucleotides to atherosclerotic plaques. Immunohistochemistry and histology analysis was performed to assess the efficacy of miR-33 silencing in atherosclerotic lesions. We also assessed how miR-33 inhibition affects gene expression in monocytes/macrophages by single-cell RNA transcriptomics. RESULTS: The anti-miR-33 conjugated pHLIP constructs are preferentially delivered to atherosclerotic plaque macrophages. The inhibition of miR-33 using pHLIP-directed macrophage targeting improves atherosclerosis regression by increasing collagen content and decreased lipid accumulation within vascular lesions. Single-cell RNA sequencing analysis revealed higher expression of fibrotic genes (Col2a1, Col3a1, Col1a2, Fn1, etc) and tissue inhibitor of metalloproteinase 3 (Timp3) and downregulation of Mmp12 in macrophages from atherosclerotic lesions targeted by pHLIP-anti-miR-33. CONCLUSIONS: This study provides proof of principle for the application of pHLIP for treating advanced atherosclerosis via pharmacological inhibition of miR-33 in macrophages that avoid the deleterious effects in other metabolic tissues. This may open new therapeutic opportunities for atherosclerosis-associated cardiovascular diseases via selective delivery of other protective miRNAs.
Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Antagomirs/metabolismo , Antagomirs/uso terapêutico , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/terapia , Humanos , Macrófagos/metabolismo , MicroRNAs/metabolismo , Placa Aterosclerótica/patologiaRESUMO
Short interfering RNA (siRNA) therapeutics have soared in popularity due to their highly selective and potent targeting of faulty genes, providing a non-palliative approach to address diseases. Despite their potential, effective transfection of siRNA into cells requires the assistance of an accompanying vector. Vectors constructed from non-viral materials, while offering safer and non-cytotoxic profiles, often grapple with lackluster loading and delivery efficiencies, necessitating substantial milligram quantities of expensive siRNA to confer the desired downstream effects. We detail the recombinant synthesis of a diverse series of coiled-coil supercharged protein (CSP) biomaterials systematically designed to investigate the impact of two arginine point mutations (Q39R and N61R) and decahistidine tags on liposomal siRNA delivery. The most efficacious variant, N8, exhibits a twofold increase in its affinity to siRNA and achieves a twofold enhancement in transfection activity with minimal cytotoxicity in vitro. Subsequent analysis unveils the destabilizing effect of the Q39R and N61R supercharging mutations and the incorporation of C-terminal decahistidine tags on α-helical secondary structure. Cross-correlational regression analyses reveal that the amount of helical character in these mutants is key in N8's enhanced siRNA complexation and downstream delivery efficiency.
Assuntos
Histidina , Lipossomos , Oligopeptídeos , RNA Interferente Pequeno , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Histidina/química , Histidina/genética , Humanos , Lipossomos/química , Oligopeptídeos/química , Oligopeptídeos/genética , Transfecção/métodos , Estrutura Secundária de ProteínaRESUMO
miR-33 is an intronic microRNA within the gene encoding the SREBP2 transcription factor. Like its host gene, miR-33 has been shown to be an important regulator of lipid metabolism. Inhibition of miR-33 has been shown to promote cholesterol efflux in macrophages by targeting the cholesterol transporter ABCA1, thus reducing atherosclerotic plaque burden. Inhibition of miR-33 has also been shown to improve high-density lipoprotein (HDL) biogenesis in the liver and increase circulating HDL-C levels in both rodents and nonhuman primates. However, evaluating the extent to which these changes in HDL metabolism contribute to atherogenesis has been hindered by the obesity and metabolic dysfunction observed in whole-body miR-33-knockout mice. To determine the impact of hepatic miR-33 deficiency on obesity, metabolic function, and atherosclerosis, we have generated a conditional knockout mouse model that lacks miR-33 only in the liver. Characterization of this model demonstrates that loss of miR-33 in the liver does not lead to increased body weight or adiposity. Hepatic miR-33 deficiency actually improves regulation of glucose homeostasis and impedes the development of fibrosis and inflammation. We further demonstrate that hepatic miR-33 deficiency increases circulating HDL-C levels and reverse cholesterol transport capacity in mice fed a chow diet, but these changes are not sufficient to reduce atherosclerotic plaque size under hyperlipidemic conditions. By elucidating the role of miR-33 in the liver and the impact of hepatic miR-33 deficiency on obesity and atherosclerosis, this work will help inform ongoing efforts to develop novel targeted therapies against cardiometabolic diseases.
Assuntos
Aterosclerose/genética , Aterosclerose/fisiopatologia , Peso Corporal , Homeostase , Fígado/metabolismo , Fígado/fisiopatologia , MicroRNAs/metabolismo , Animais , Aterosclerose/sangue , Transporte Biológico , Tetracloreto de Carbono , Colesterol/metabolismo , Dieta Hiperlipídica , Comportamento Alimentar , Regulação da Expressão Gênica , Lipoproteínas HDL/sangue , Camundongos , MicroRNAs/genética , Obesidade/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/fisiopatologiaRESUMO
BACKGROUND: Multidrug-resistant Enterobacterales (MDR-E), including carbapenem-resistant and third-generation cephalosporin-resistant Enterobacterales (CRE, CefR-E), are major pathogens following solid organ transplantation (SOT). METHODS: We prospectively studied patients who underwent lung, liver, and small bowel transplant from February 2015 through March 2017. Weekly perirectal swabs (up to 100 days post-transplant) were cultured for MDR-E. Whole-genome sequencing (WGS) was performed on gastrointestinal (GI) tract-colonizing and disease-causing isolates. RESULTS: Twenty-five percent (40 of 162) of patients were MDR-E GI-colonized. Klebsiella pneumoniae was the most common CRE and CefR-E. Klebsiella pneumoniae carbapenemases and CTX-M were leading causes of CR and CefR, respectively. Thirty-five percent of GI colonizers developed MDR-E infection vs 2% of noncolonizers (P < .0001). The attack rate was higher among CRE colonizers than CefR-E colonizers (53% vs 21%, P = .049). GI colonization and high body mass index were independent risk factors for MDR-E infection (P ≤ .004). Thirty-day mortality among infected patients was 6%. However, 44% of survivors developed recurrent infections; 43% of recurrences were late (285 days to 3.9 years after the initial infection). Long-term survival (median, 4.3 years post-transplant) did not differ significantly between MDR-E-infected and MDR-E-noninfected patients (71% vs 77%, P = .56). WGS phylogenetic analyses revealed that infections were caused by GI-colonizing strains and suggested unrecognized transmission of novel clonal group-258 sublineage CR-K. pneumoniae and horizontal transfer of resistance genes. CONCLUSIONS: MDR-E GI colonization was common following SOT and predisposed patients to infections by colonizing strains. MDR-E infections were associated with low short- and long-term mortality, but recurrences were frequent and often occurred years after initial infections. Findings provide support for MDR-E surveillance in our SOT program.
Assuntos
Transplante de Órgãos , Transplantados , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Humanos , Klebsiella pneumoniae/genética , Epidemiologia Molecular , Transplante de Órgãos/efeitos adversos , FilogeniaRESUMO
Magnetic tunnel junctions operating in the superparamagnetic regime are promising devices in the field of probabilistic computing, which is suitable for applications like high-dimensional optimization or sampling problems. Further, random number generation is of interest in the field of cryptography. For such applications, a device's uncorrelated fluctuation time-scale can determine the effective system speed. It has been theoretically proposed that a magnetic tunnel junction designed to have only easy-plane anisotropy provides fluctuation rates determined by its easy-plane anisotropy field and can perform on a nanosecond or faster time-scale as measured by its magnetoresistance's autocorrelation in time. Here, we provide experimental evidence of nanosecond scale fluctuations in a circular-shaped easy-plane magnetic tunnel junction, consistent with finite-temperature coupled macrospin simulation results and prior theoretical expectations. We further assess the degree of stochasticity of such a signal.
RESUMO
OBJECTIVES: The primary purpose of this study was to examine vestibular/ocular motor screening (VOMS) test performance in a sample of healthy youth ice hockey players. A particular focus was to investigate the potential effects of age and pre-existing health conditions, including concussion history, attention-deficit/hyperactivity disorder (ADHD), learning disability (LD), headaches/migraines, and depression/anxiety on preseason baseline VOMS performance, including the near point of convergence (NPC) distance. DESIGN: Cross-sectional cohort. SETTING: Outpatient physiotherapy clinic. PARTICIPANTS: Three hundred eighty-seven male youth hockey players, with an average age of 11.9 years (SD = 2.2, range = 8-17), completed the VOMS and responded to self- or parent-reported demographic and medical history questionnaires during preseason baseline assessments. INDEPENDENT VARIABLES ASSESSED: Age, sex, and mental and physical health history including ADHD, headaches, depression, anxiety, migraine, and LD. OUTCOME MEASURE: Vestibular/ocular motor screening. RESULTS: The large majority of boys scored within normal limits on the VOMS, ie, they reported no symptom provocation of more than 2 points on any VOMS subset (89%) and had a normal NPC distance, ie, <5 cm (78%). The individual VOMS subtests had low abnormality rates, and demographic and pre-existing health conditions, such as age, headache or migraine history, previous neurodevelopmental conditions, or mental health problems, were not associated with clinically meaningful symptom provocation during the VOMS. CONCLUSIONS: There was a low rate of abnormal findings for the individual VOMS subtests, with the exception of NPC distance, among male youth hockey players during preseason assessment.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Exame Neurológico/métodos , Adolescente , Ansiedade , Transtorno do Deficit de Atenção com Hiperatividade , Concussão Encefálica/diagnóstico , Criança , Estudos de Coortes , Estudos Transversais , Depressão , Hóquei , Humanos , Deficiências da Aprendizagem , Masculino , Transtornos de EnxaquecaRESUMO
Shift-work and jet-lag-related disorders are caused by the limited flexibility of the suprachiasmatic nucleus (SCN), a master circadian clock in the hypothalamus, to adjust to new light-dark (LD) cycles. Recent findings confirmed here establish that behavioral jet lag after simulated time-zone travel is virtually eliminated following bifurcated circadian entrainment under a novel and atypical 24-h light:dark:light:dark (LDLD) cycle. To investigate the mechanisms of this fast resetting, we examined the oscillatory stability of the SCN and peripheral tissues in LDLD-bifurcated mice employing the dissection procedure as a perturbing resetting stimulus. SCN, lung, liver, and adrenal tissue were extracted at times throughout the day from female and male PER2::Luciferase knock-in mice entrained to either LDLD or a normal LD cycle. Except for adrenals, the phase of the cultured explants was more strongly set by dissection under LDLD than under normal LD. Acute bioluminescence levels of SCN explants indicate that the rhythm amplitude of PER2 is reduced and phase is altered in LDLD. Real-time quantitative PCR suggests that amplitude and rhythmicity of canonical clock genes in the lung, liver, and kidney are also significantly reduced in LDLD in vivo. Furthermore, spatiotemporal patterns of PER2 peak time in cultured SCN were altered in LDLD. These results suggest that altered gene expression patterns in the SCN caused by bifurcation likely result in fast resetting of behavior and cultured explants, consistent with previously reported mathematical models. Thus, non-invasive, simple light manipulations can make circadian rhythms more adaptable to abrupt shifts in the environmental LD cycle.
Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Feminino , Luz , Masculino , Camundongos , Fotoperíodo , Núcleo SupraquiasmáticoRESUMO
An important goal of spintronics is to covert a charge current into a spin current with a controlled spin polarization that can exert torques on an adjacent magnetic layer. Here we demonstrate such torques in a two ferromagnet system. A CoNi multilayer is used as a spin current source in a sample with structure CoNi/Au/CoFeB. Spin torque ferromagnetic resonance is used to measure the torque on the CoFeB layer. The response as a function of the applied field angle and current is consistent with the symmetry expected for a torque produced by the planar Hall effect originating in CoNi. We find the strength of this effect to be comparable to that of the spin Hall effect in platinum, indicating that the planar Hall effect holds potential as a spin current source with a controllable polarization direction.
RESUMO
OBJECTIVES: The objectives of this study were to report baseline, preseason data for the Child-SCAT3, stratified by attention deficit hyperactivity disorder (ADHD) status, and examine group differences in Child-SCAT3 performance between children with and without ADHD. DESIGN: Cross-sectional study. METHODS: Young male hockey players (n = 304), aged 8-12 years, were administered the Child-SCAT3 during pre-season. Child-SCAT3 measures included a 20-item symptom scale, a Standardised Assessment of Concussion Child Version (SAC-C), a modified Balance Error Scoring System (m-BESS), a tandem gait task, and a coordination test. RESULTS: Children with ADHD (n = 20) endorsed significantly more symptoms (d = 0.95) and greater symptom severity (d = 1.13) compared to children without ADHD. No statistically significant differences were found between groups on Child-SCAT3 measures of cognitive or physical functioning (e.g. balance and coordination). CONCLUSIONS: ADHD should be considered when interpreting Child-SCAT3 scores, especially symptom reporting, in the context of concussion assessment. Better understanding of symptom reporting in uninjured child athletes with ADHD can inform the clinical interpretation of symptoms at baseline and following an actual or suspected concussion. Normative data for the Child-SCAT3 that is not stratified by or otherwise accounts for ADHD status should be used with caution when appraising performance of children with ADHD.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Concussão Encefálica/complicações , Concussão Encefálica/etiologia , Índice de Gravidade de Doença , Traumatismos em Atletas/complicações , Criança , Estudos Transversais , Hóquei/lesões , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Estudos Retrospectivos , Estatísticas não ParamétricasRESUMO
Coiled-coil protein motifs have become widely employed in the design of biomaterials. Some of these designs have been studied for use in drug delivery due to the unique ability of coiled-coils to impart stability, oligomerization, and supramolecular assembly. To leverage these properties and improve drug delivery, release, and targeting, a variety of nano- to mesoscale architectures have been adopted. Coiled-coil drug delivery and therapeutics have been developed by using the coiled-coil alone, designing for higher-order assemblies such as fibers and hydrogels, and combining coiled-coil proteins with other biocompatible structures such as lipids and polymers. We review the recent development of these structures and the design criteria used to generate functional proteins of varying sizes and morphologies.
RESUMO
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Assuntos
Hepatopatias , Regeneração Hepática , Animais , Regeneração Hepática/fisiologia , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Modelos Animais de Doenças , Proliferação de CélulasRESUMO
Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.
Assuntos
Carcinoma Hepatocelular , Proteínas de Ligação a Ácido Graxo , Ferroptose , Neoplasias Hepáticas , Proteínas de Neoplasias , Obesidade , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Camundongos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiologia , Obesidade/complicações , Obesidade/metabolismo , Masculino , Microambiente Tumoral/imunologia , Humanos , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologiaRESUMO
The complexity of the mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction-associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.
Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Hepatócitos , Neoplasias Hepáticas , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos Knockout , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologiaRESUMO
The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.
RESUMO
Vibrio cholerae has adapted to a wide range of salinity, pH and osmotic conditions, enabling it to survive passage through the host and persist in the environment. Among the many proteins responsible for bacterial survival under these diverse conditions, we have identified Vc-NhaP1 as a K(+)(Na(+))/H(+) antiporter essential for V. cholerae growth at low environmental pH. Deletion of the V. cholerae nhaP1 gene caused growth inhibition when external potassium was either limited (100 mM and below) or in excess (400 mM and above). This growth defect was most apparent at mid-exponential phase, after 4-6 h of culture. Using a pH-sensitive GFP, cytosolic pH was shown to be dependent on K(+) in acidic external conditions in a Vc-NhaP1-dependent manner. When functionally expressed in an antiporterless Escherichia coli strain and assayed in everted membrane vesicles, Vc-NhaP1 operated as an electroneutral alkali cation/proton antiporter, exchanging K(+) or Na(+) ions for H(+) within a broad pH range (7.25-9.0). These data establish the putative V. cholerae NhaP1 protein as a functional K(+)(Na(+))/H(+) antiporter of the CPA1 family that is required for bacterial pH homeostasis and growth in an acidic environment.
Assuntos
Proteínas de Bactérias/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Potássio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vibrio cholerae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Clonagem Molecular , Citoplasma/fisiologia , Deleção de Genes , Homeostase , Concentração de Íons de Hidrogênio , Antiportadores de Potássio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/genética , Vibrio cholerae/genética , Vibrio cholerae/fisiologiaRESUMO
Fluorination represents one of the most powerful modern design strategies to impart biomacromolecules with unique functionality, empowering them for widespread application in the biomedical realm. However, the properties of fluorinated protein materials remain unpredictable due to the heavy context-dependency of the surrounding atoms influenced by fluorine's strong electron-withdrawing tendencies. This review aims to discern patterns and elucidate design principles governing the biochemical synthesis and rational installation of fluorine into protein and peptide sequences for diverse biomedical applications. Several case studies are presented to deconvolute the overgeneralized fluorous stabilization effect and critically examine the duplicitous nature of the resultant enhanced chemical and thermostability as it applies to use as biomimetic therapeutics, drug delivery vehicles, and bioimaging modalities.
RESUMO
Epigenetic modifications of the genome, including DNA methylation, histone methylation/acetylation, and noncoding RNAs, have been reported to play a fundamental role in regulating immune response during the progression of atherosclerosis. SETDB2 is a member of the KMT1 family of lysine methyltransferases, and members of this family typically methylate histone H3 Lys9 (H3K9), an epigenetic mark associated with gene silencing. Previous studies have shown that SETDB2 is involved in innate and adaptive immunity, the proinflammatory response, and hepatic lipid metabolism. Here, we report that expression of SETDB2 is markedly upregulated in human and murine atherosclerotic lesions. Upregulation of SETDB2 was observed in proinflammatory M1 but not antiinflammatory M2 macrophages. Notably, we found that genetic deletion of SETDB2 in hematopoietic cells promoted vascular inflammation and enhanced the progression of atherosclerosis in BM transfer studies in Ldlr-knockout mice. Single-cell RNA-Seq analysis in isolated CD45+ cells from atherosclerotic plaques from mice transplanted with SETDB2-deficient BM revealed a significant increase in monocyte population and enhanced expression of genes involved in inflammation and myeloid cell recruitment. Additionally, we found that loss of SETDB2 in hematopoietic cells was associated with macrophage accumulation in atherosclerotic lesions and attenuated efferocytosis. Overall, these studies identify SETDB2 as an important inflammatory cell regulator that controls macrophage activation in atherosclerotic plaques.