Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 20(5): e1012020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743761

RESUMO

Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-ß. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.


Assuntos
Interferon gama , Orientia tsutsugamushi , Tifo por Ácaros , Transdução de Sinais , Animais , Camundongos , Modelos Animais de Doenças , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orientia tsutsugamushi/imunologia , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Pele/microbiologia , Pele/patologia , Pele/imunologia , Fator de Transcrição STAT1/metabolismo , Receptor de Interferon gama/genética , Receptor de Interferon gama/metabolismo
2.
Am J Respir Cell Mol Biol ; 71(1): 110-120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574279

RESUMO

Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome. IL-10 plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the present study, we investigated the role of IL-10 in acute lung injury induced by influenza A virus and methicillin-resistant Staphylococcus aureus coinfection. This unique coinfection model resembles patients with acute pneumonia undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor gene-deficient mice, as well as in vivo neutralizing antibodies, we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with Il10ra deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyperproduction and acute mortality. Importantly, this antiinflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and acute respiratory distress syndrome pathogenesis by counteracting the IFN-γ response.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Interferon gama , Interleucina-10 , Superinfecção , Animais , Interleucina-10/metabolismo , Interleucina-10/imunologia , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/microbiologia , Interferon gama/metabolismo , Superinfecção/imunologia , Superinfecção/virologia , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Coinfecção/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Infecções Estafilocócicas/imunologia , Camundongos Knockout , Vírus da Influenza A/imunologia , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo
3.
J Immunol ; 209(1): 128-135, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705254

RESUMO

Postinfluenza bacterial pneumonia is a significant cause of hospitalization and death in humans. The mechanisms underlying this viral and bacterial synergy remain incompletely understood. Recent evidence indicates that influenza-induced IFNs, particularly type I IFN (IFN-I) and IFN-γ, suppress antibacterial defenses. In this study, we have investigated the relative importance and interplay of IFN-I and IFN-γ pathways in influenza-induced susceptibility to Streptococcus pneumoniae infection. Using gene-deficient mouse models, as well as in vivo blocking Abs, we show that both IFN-I and IFN-γ signaling pathways contribute to the initial suppression of antibacterial immunity; however, IFN-γ plays a dominant role in the disease deterioration, in association with increased TNF-α production and alveolar macrophage (AM) depletion. We have previously shown that IFN-γ impairs AM antibacterial function and thereby acute bacterial clearance. The findings in this study indicate that IFN-γ signaling also impairs AM viability and αß T cell recruitment during the progression of influenza/S. pneumoniae coinfection. Macrophages insensitive to IFN-γ mice express a dominant-negative mutant IFN-γR in mononuclear phagocytes. Interestingly, macrophages insensitive to IFN-γ mice exhibited significantly improved recovery and survival from coinfection, despite delayed bacterial clearance. Importantly, we demonstrate that IFN-I receptor signaling is essential for preventing IFN-γ hyperproduction and animal death during the progression of postinfluenza pneumococcal pneumonia.


Assuntos
Coinfecção , Influenza Humana , Interferon Tipo I/metabolismo , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Pneumonia Pneumocócica , Animais , Antibacterianos , Humanos , Interferon gama , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Immunol ; 207(5): 1371-1376, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380647

RESUMO

Inflammatory cytokine storm is a known cause for acute respiratory distress syndrome. In this study, we have investigated the role of IFN-γ in lethal lung inflammation using a mouse model of postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. To mimic the clinical scenario, animals were treated with antibiotics for effective bacterial control following MRSA superinfection. However, antibiotic therapy alone is not sufficient to improve survival of wild-type animals in this lethal acute respiratory distress syndrome model. In contrast, antibiotics induce effective protection in mice deficient in IFN-γ response. Mechanistically, we show that rather than inhibiting bacterial clearance, IFN-γ promotes proinflammatory cytokine response to cause lethal lung damage. Neutralization of IFN-γ after influenza prevents hyperproduction of TNF-α, and thereby protects against inflammatory lung damage and animal mortality. Taken together, the current study demonstrates that influenza-induced IFN-γ drives a stepwise propagation of inflammatory cytokine response, which ultimately results in fatal lung damage during secondary MRSA pneumonia, despite of antibiotic therapy.


Assuntos
Antibacterianos/uso terapêutico , Inflamação/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Interferon gama/metabolismo , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Estafilocócica/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Células Cultivadas , Humanos , Influenza Humana/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/complicações , Pneumonia Estafilocócica/complicações , Infecções Estafilocócicas/complicações , Superinfecção , Fator de Necrose Tumoral alfa
5.
J Immunol ; 205(6): 1601-1607, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796026

RESUMO

Secondary Streptococcus pneumoniae infection is a significant cause of morbidity and mortality during influenza epidemics and pandemics. Multiple pathogenic mechanisms, such as lung epithelial damage and dysregulation of neutrophils and alveolar macrophages (AMs), have been suggested to contribute to the severity of disease. However, the fundamental reasons for influenza-induced susceptibility to secondary bacterial pneumonia remain unclear. In this study, we revisited these controversies over key pathogenic mechanisms in a lethal model of secondary bacterial pneumonia with an S. pneumoniae strain that is innocuous to mice in the absence of influenza infection. Using a series of in vivo models, we demonstrate that rather than a systemic suppression of immune responses or neutrophil function, influenza infection activates IFN-γR signaling and abrogates AM-dependent bacteria clearance and thereby causes extreme susceptibility to pneumococcal infection. Importantly, using mice carrying conditional knockout of Ifngr1 gene in different myeloid cell subsets, we demonstrate that influenza-induced IFN-γR signaling in AMs impairs their antibacterial function, thereby enabling otherwise noninvasive S. pneumoniae to cause deadly pneumonia.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Macrófagos Alveolares/fisiologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Pneumocócica/imunologia , Receptores de Interferon/metabolismo , Streptococcus pneumoniae/fisiologia , Animais , Coinfecção , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interferon/genética , Transdução de Sinais , Receptor de Interferon gama
6.
J Immunol ; 202(7): 2027-2034, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745458

RESUMO

Methicillin-resistant Staphylococcus aureus has emerged as a significant contributor to morbidity and mortality associated with influenza infection. In this study, we show in a mouse model that preceding influenza infection promotes S. aureus resistance to killing by antibiotics. This resistance coincides with influenza-induced accumulation of inflammatory monocytes in the lung. CCR type 2 (CCR2) is responsible for pulmonary monocyte recruitment after influenza infection. We found that antibiotic-treated Ccr2-deficient (Ccr2-/-) mice exhibit significantly improved bacterial control and survival from influenza and methicillin-resistant S. aureus coinfection, despite a delay in viral clearance. Mechanistically, our results from in vivo studies indicate that influenza-induced monocytes serve as reservoirs for intracellular S. aureus survival, thereby promoting bacterial resistance to antibiotic treatment. Blocking CCR2 with a small molecular inhibitor (PF-04178903), in conjunction with antibiotic treatment, enhanced lung bacterial clearance and significantly improved animal survival. Collectively, our study demonstrates that inflammatory monocytes constitute an important and hitherto underappreciated mechanism of the conflicting immune requirements for viral and bacterial clearance by hosts, which subsequently leads to exacerbated outcomes of influenza and S. aureus coinfection.


Assuntos
Coinfecção/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Infecções por Orthomyxoviridae/complicações , Animais , Farmacorresistência Bacteriana/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Receptores CCR2/imunologia
7.
J Immunol ; 200(4): 1425-1433, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29311363

RESUMO

Influenza and bacterial coinfection is a significant cause of hospitalization and death in humans during influenza epidemics and pandemics. However, the fundamental protective and pathogenic mechanisms involved in this complex virus-host-bacterium interaction remain incompletely understood. In this study, we have developed mild to lethal influenza and Streptococcus pneumoniae coinfection models for comparative analyses of disease pathogenesis. Specifically, wild-type and IL-1R type 1-deficient (Il1r1-/- ) mice were infected with influenza virus and then superchallenged with noninvasive S. pneumoniae serotype 14 (Spn14) or S. pneumoniae serotype 19A (Spn19A). The coinfections were followed by comparative analyses of inflammatory responses and animal protection. We found that resident alveolar macrophages are efficient in the clearance of both pneumococcal serotypes in the absence of influenza infection; in contrast, they are essential for airway control of Spn14 infection but not Spn19A infection. In agreement, TNF-α and neutrophils play a compensatory protective role in secondary bacterial infection associated with Spn19A; however, the essential requirement for alveolar macrophage-mediated clearance significantly enhances the virulence of Spn14 during postinfluenza pneumococcal infection. Furthermore, we show that, although IL-1 signaling is not required for host defense against pneumococcal infection alone, it is essential for sustaining antibacterial immunity during postinfluenza pneumococcal infection, as evidenced by significantly aggravated bacterial burden and animal mortality in Il1r1-/- mice. Mechanistically, we show that through preventing alveolar macrophage depletion, inflammatory cytokine IL-1 signaling is critically involved in host resistance to influenza and pneumococcal coinfection.


Assuntos
Coinfecção/imunologia , Interleucina-1/imunologia , Macrófagos Alveolares/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Animais , Humanos , Vírus da Influenza A Subtipo H3N2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
8.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31383747

RESUMO

Postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) infection can quickly develop into severe, necrotizing pneumonia, causing over 50% mortality despite antibiotic treatments. In this study, we investigated the efficacy of antibiotic therapies and the impact of S. aureus alpha-toxin in a model of lethal influenza virus and MRSA coinfection. We demonstrate that antibiotics primarily attenuate alpha-toxin-induced acute lethality, even though both alpha-toxin-dependent and -independent mechanisms significantly contribute to animal mortality after coinfection. Furthermore, we found that the protein synthesis-suppressing antibiotic linezolid has an advantageous therapeutic effect on alpha-toxin-induced lung damage, as measured by protein leak and lactate dehydrogenase (LDH) activity. Importantly, using a Panton-Valentine leucocidin (PVL)-negative MRSA isolate from patient sputum, we show that linezolid therapy significantly improves animal survival from postinfluenza MRSA pneumonia compared with vancomycin treatment. Rather than improved viral or bacterial control, this advantageous therapeutic effect is associated with a significantly attenuated proinflammatory cytokine response and acute lung damage in linezolid-treated mice. Together, our findings not only establish a critical role of alpha-toxin in the extreme mortality of secondary MRSA pneumonia after influenza but also provide support for the possibility that linezolid could be a more effective treatment than vancomycin to improve disease outcomes.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Linezolida/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Pneumonia Estafilocócica/tratamento farmacológico , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Feminino , Expressão Gênica , Gentamicinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , L-Lactato Desidrogenase/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Plasmídeos/química , Plasmídeos/metabolismo , Pneumonia Estafilocócica/complicações , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/mortalidade , Análise de Sobrevida , Vancomicina/farmacologia
9.
J Immunol ; 196(10): 4196-203, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053759

RESUMO

The incidence of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in otherwise healthy individuals is increasing. To investigate the mechanism underlying the epidemiological success of predominant community-associated (CA)-MRSA strains, we examined their fitness traits during the initial interaction between bacteria and the host occurring in the lower airway. Using a mouse respiratory infection model, we show that clinical isolates often responsible for CA infections are highly resistant to clearance from healthy airways, whereas S. aureus strains not as prevalent or traditionally associated with hospital-associated infections are relatively susceptible. Mechanistically, the competitive fitness of S. aureus is a result of both agr-dependent and -independent resistance to innate bacterial killing. Furthermore, we show that rather than evasion from neutrophil-dependent bactericidal process, the observed S. aureus fitness in the lower airways is due to its intrinsic resistance to resident alveolar macrophage-mediated intracellular killing. Importantly, we demonstrate that the virulence determinants responsible for bacterial persistence in immune-competent mice are dispensable in mice with predisposing conditions such as influenza infection. Taken together, these novel findings of the improved competence of predominant CA-MRSA strains to survive innate killing in healthy hosts, particularly at the very beginning stage of infection, provide a unique insight into their epidemiological success.


Assuntos
Macrófagos Alveolares/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Neutrófilos/imunologia , Pneumonia Bacteriana/microbiologia , Sistema Respiratório/microbiologia , Infecções Estafilocócicas/microbiologia , Animais , Líquido da Lavagem Broncoalveolar/microbiologia , Linhagem Celular , Coinfecção/imunologia , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Estimativa de Kaplan-Meier , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/microbiologia , Fagocitose , Pneumonia Bacteriana/imunologia , Sistema Respiratório/imunologia , Organismos Livres de Patógenos Específicos , Infecções Estafilocócicas/imunologia , Virulência , Fatores de Virulência/genética
10.
PLoS Pathog ; 10(12): e1004560, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25500584

RESUMO

Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. SOCS1-/- mice die within three weeks postnatally due to IFN-γ-induced hyperinflammation. Since it is well established that IFN-γ is dispensable for protection against influenza infection, we generated SOCS1-/-IFN-γ-/- mice to determine whether SOCS1 regulates antiviral immunity in vivo. Here we show that SOCS1-/-IFN-γ-/- mice exhibited significantly enhanced resistance to influenza infection, as evidenced by improved viral clearance, attenuated acute lung damage, and consequently increased survival rates compared to either IFN-γ-/- or WT animals. Enhanced viral clearance in SOCS1-/-IFN-γ-/- mice coincided with a rapid onset of adaptive immune responses during acute infection, while their reduced lung injury was associated with decreased inflammatory cell infiltration at the resolution phase of infection. We further determined the contribution of SOCS1-deficient T cells to antiviral immunity. Anti-CD4 antibody treatment of SOCS1-/-IFN-γ-/- mice had no significant effect on their enhanced resistance to influenza infection, while CD8+ splenocytes from SOCS1-/-IFN-γ-/- mice were sufficient to rescue RAG1-/- animals from an otherwise lethal infection. Surprisingly, despite their markedly reduced viral burdens, RAG1-/- mice reconstituted with SOCS1-/-IFN-γ-/- adaptive immune cells failed to ameliorate influenza-induced lung injury. In conclusion, in the absence of IFN-γ, the cytoplasmic protein SOCS1 not only inhibits adaptive antiviral immune responses but also exacerbates inflammatory lung damage. Importantly, these detrimental effects of SOCS1 are conveyed through discrete cell populations. Specifically, while SOCS1 expression in adaptive immune cells is sufficient to inhibit antiviral immunity, SOCS1 in innate/stromal cells is responsible for aggravated lung injury.


Assuntos
Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/virologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Imunidade Adaptativa/fisiologia , Animais , Citocinas/fisiologia , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Interferon gama/deficiência , Interferon gama/genética , Interferon gama/fisiologia , Pneumopatias/fisiopatologia , Pneumopatias/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/deficiência , Proteínas Supressoras da Sinalização de Citocina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA