RESUMO
CONTEXT: The effect of the active ingredients in traditional Chinese medicines on the activity of cytochrome P450 enzymes (CYP450s) is a critical factor that should be considered in TCM prescriptions. Physcion, the major active ingredient of Rheum spp. (Polygonaceae), possesses wide pharmacological activities. OBJECTIVES: The effect of physcion on CYP450 activity was investigated to provide a theoretical basis for use. MATERIALS AND METHODS: The experiments were conducted in pooled human liver microsomes (HLMs). The activity of CYP450 isoforms was evaluated with corresponding substrates and probe reactions. Blank HLMs were set as negative controls, and typical inhibitors were employed as positive controls. The inhibition model was fitted with Lineweaver Burk plots. The concentration (0, 2.5, 5, 10, 25, 50 and 100 µM physcion) and time-dependent (0, 5, 10, 15 and 30 min) effects of physcion were also assessed. RESULTS: Physcion suppressed CYP2C9, 2D6 and 3A4 in a concentration-dependent manner with IC50 values of 7.44, 17.84 and 13.50 µM, respectively. The inhibition of CYP2C9 and 2D6 was competitive with the Ki values of 3.69 and 8.66 µM, respectively. The inhibition of CYP3A4 was non-competitive with a Ki value of 6.70 µM. Additionally, only the inhibition of CYP3A4 was time-dependent with the KI and Kinact parameters of 3.10 µM-1 and 0.049 min-1, respectively. CONCLUSIONS: The inhibition of CYP450s by physcion should be considered in its clinical prescription, and the study design can be employed to evaluate the interaction of CYP450s with other herbs.
Assuntos
Citocromo P-450 CYP3A , Emodina/análogos & derivados , Microssomos Hepáticos , Humanos , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450RESUMO
BACKGROUND: Non-alcohol fatty liver disease (NAFLD) is the most prevalent hepatopathy in China, with few effective cures currently. This work aimed to confirm the effect of DHM in vivo/vitro and explore the potential mechanism based on a network pharmacology-based approach. METHODS: The rats were fed using a high-fat diet (HFD) to accumulate lipid. DHM at different concentrations was used to treat the HFD rats. The serum total cholesterol (TC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were detected using ELISA kits. The target genes of DHM against NAFLD were screened by online databases. Then, the cytotoxicity of DHM in primary hepatocytes and HepG2 cells was determined by MTT reagent. qRT-PCR was used to quantify the expression level of PPAGR and CASP3 mRNA. Cell apoptosis and intracellular triglyceride (TG) were detected. RESULTS: HFD diet increased rat liver weight/body weight ratio, serum TC, ALT, and AST. But DHM treatment can reduce these elevated indicators. DHM targeted 14 potential genes in NAFLD. PPARG and CASP3 were two hub genes for DHM against NAFLD, with score factor coefficients of -7.1 and -6.8 kcal/mol. DHM reduced the increased PPARG mRNA level and intracellular TG induced by palmitic acid. DHM can reduce the increased CASP3 mRNA level and cell apoptosis induced by palmitic acid. CONCLUSION: This work demonstrates a mechanism of DHM that alleviates lipid metabolism disorder and cell apoptosis for the treatment of NAFLD, evidencing the potential application of DHM in NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , PPAR gama/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Caspase 3/metabolismo , Farmacologia em Rede , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismoRESUMO
Twelve new dimeric tetrahydroxanthones, muyocoxanthones A-L (1-12), were isolated from the endophytic fungus, Muyocopron laterale. Their structures were characterized on the basis of the interpretation of NMR and HRESIMS data. The absolute configurations of 1-10 and 12 were unambiguously determined by ECD spectrum data and single-crystal X-ray diffraction analysis. Compounds 2, 6, and 11 showed inhibitory activity against the LPS-induced production of nitric oxide (NO) in RAW 264.7 cells with IC50 values of 5.2, 1.3, and 5.1 µM, respectively.
Assuntos
Anti-Inflamatórios/farmacologia , Ascomicetos/química , Xantonas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X/métodos , Dimerização , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Six new secondary metabolites, including two new nor-triterpenes (1 and 2), one new sesquiterpene (4), two new α-pyrone derivatives (6 and 7), and one new natural product (5) along with two known compounds (3 and 8) were isolated from an endophytic fungus Colletotrichum gloeosporioides obtained from a toxic medicinal plant Tylophora ovata. Their structures were elucidated by spectroscopic data analyses, while their absolute configurations were determined by CD and X-ray diffraction analyses. The in vitro anti-inflammatory activities of these compounds were evaluated.
Assuntos
Colletotrichum , Plantas Medicinais , Colletotrichum/química , Colletotrichum/metabolismo , Endófitos/química , Estrutura Molecular , TylophoraRESUMO
Two new sydowic acid derivatives, a pair of enantiomers, involving (+)-sydowiccal (1a) and (-)-sydowiccal (1b), a new sulfonyl metabolite of 2-methoxy-5-methyl-3-(methylsulfonyl)phenol (2), as well as three known sydowic acid derivatives, were isolated from Aspergillus sydowii, an endophytic fungus of Rhododendron mole. The structures of these new compounds were elucidated by analyzing their NMR and HRESIMS data, and the absolute configurations of enantiomers were determined on the basis of the CD spectrum. Three new metabolites showed weak anti-inflammation on nitric oxide (NO) production in LPS-induced RAW 264.7 cells.
Assuntos
Aspergillus , Fungos , Camundongos , Animais , Estrutura Molecular , Aspergillus/química , Células RAW 264.7RESUMO
To study the thermal decomposition behavior of 4,4'-azobis(1,2,4-triazole) (ATRZ), the non-isothermal thermal decomposition kinetics of ATRZ were studied using the thermogravimetric-differential scanning calorimetry (TG-DSC) method. The TG-DSC of ATRZ was analyzed at heating rates of 5, 10, 15, and 20 K·min-1 in an argon atmosphere. The thermal decomposition kinetic parameters at peak temperature (Tp), such as apparent activation energy (Ea) and pre-exponential factor (lgA) of ATRZ, were calculated using the Kissinger, Ozawa, and Satava-Sestak methods. Ea and lgA calculated using the Kissinger, Ozawa, and Satava-Sestak methods are very close, at 780.2 kJ·mol-1/70.5 s-1, 751.1 kJ·mol-1/71.8 s-1, and 762.1 kJ·mol-1/71.8 s-1, respectively. Using a combination of three methods, the reaction mechanism function g(α) of ATRZ was obtained. The results show that the decomposition temperature of ATRZ is about 310 °C, and the decomposition is rapidly exothermic. The pyrolysis path of ATRZ was investigated through a pyrolysis-gas chromatography mass spectrometry (PY-GC/MS) experiment. ATRZ has three different decomposition paths and finally generates N2, HC-N-CH, N≡C-N, and HC=N-C≡N. The laser ignition combustion duration of ATRZ was 0.5033 s and the peak temperature was 1913 °C. The laser ignition combustion duration of ATRZ+CL-20 was 1.0277 s and the peak temperature was 2105 °C. The rapid energy release rate of ATRZ promotes the combustion energy release of CL-20.
Assuntos
Nitrogênio , Pirólise , Argônio , Cinética , Termogravimetria , TriazóisRESUMO
CONTEXT: The co-administration of abemaciclib and astragaloside IV might occur in the treatment of breast cancer. OBJECTIVE: This study evaluates the interaction between abemaciclib and astragaloside IV in rats and describes the potential mechanism. MATERIALS AND METHODS: Male Sprague Dawley rats were randomly divided into four groups: single dose of abemaciclib (control), abemaciclib + 50 mg/kg/d astragaloside IV, abemaciclib + 100 mg/kg/d astragaloside IV, and abemaciclib + 150 mg/kg/d astragaloside IV. Abemaciclib and astragaloside IV were orally administrated, and astragaloside IV was pre-administrated for 7 d in the co-administrated groups. The pharmacokinetics and transport of abemaciclib were assessed in the absence or presence of astragaloside IV. In mechanism, the activity of CYP3A4 was estimated in human liver microsomes in the presence of astragaloside IV. RESULTS: Astragaloside IV significantly increased the Cmax (from 991.5 ± 116.99 up to 2308.5 ± 55.29 µg/L) and AUC (from 24.49 ± 2.86 up to 66.14 ± 1.17 µg/mL × h) and prolonged the t1/2 (from 19.85 ± 4.65 up to 66.17 ± 28.73 h) of abemaciclib, and the effect was enhanced with the increasing astragaloside IV concentration. Astragaloside IV also suppressed the transport of abemaciclib with the efflux ratio decreasing to 1.35. Astragaloside IV suppressed the activity of CYP3A4 with an IC50 value of 21.78 µM. DISCUSSION AND CONCLUSIONS: The co-administration of abemaciclib and astragaloside IV induced the increasing systemic exposure of abemaciclib through the inhibition of CYP3A4. Further clinical validations could be carried out according to the study design of the present investigation.
Assuntos
Saponinas , Triterpenos , Aminopiridinas , Animais , Benzimidazóis , Citocromo P-450 CYP3A , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
A large number of remarkable studies on the secondary metabolites of fungi have been conducted in recent years. This review gives an overview of one hundred and sixty-seven molecules with novel skeletons and their bioactivities that have been reported in seventy-nine articles published from 2013 to 2017. Our statistical data showed that endophytic fungi and marine-derived fungi are the major sources of novel bioactive secondary metabolites.
Assuntos
Endófitos , Fungos , Estrutura MolecularRESUMO
Eight compounds,(R)-2-[5-(methoxycarbonyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]acetic acid(1),(3S,4R)-3,4-dihydro-3,4-epoxy-5-hydroxynaphthalen-1(2H)-one(2),(-)-mitorubrinol(3),(-)-mitorubrin(4),(±)-asperlone A(5), terreusinone(6), verrucisidinol(7) and cerebroside C(8) were isolated from the endophytic fungus Talaromyces purpurogenus by using various column chromatographic techniques. Their structures were identified by NMR, MS, CD and optical rotation. Compounds 1 and 2 were new compounds. Their anti-diabetic activities in vitro were evaluated, and compound 1 showed moderate inhibitory activity toward XOD at 10 µmol·L~(-1) with the inhibition rate of 69.9%.
Assuntos
Talaromyces/química , Tylophora/microbiologia , Endófitos/química , Hipoglicemiantes/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Metabolismo Secundário , Xantina Oxidase/antagonistas & inibidoresRESUMO
Eight new cadinene-sesquiterpenes (1-8), one eudesmane-sesquiterpene (9), and three known compounds (10-13) were isolated from an endophytic fungus, Aspergillus flavus, which was isolated from a toxic medicinal plant, Tylophora ovata. Their structures were elucidated by interpretation of spectroscopic data, and absolute configurations determined according to the specific rotation and electron circular dichroism methods. Compounds 4-8, 11, and 12 exhibited latent hepatic protection effects at 10 µM, and compound 12 selectively inhibited the proliferation of MCF-7 breast cancer cells with an IC50 values of 2.6 µM.
Assuntos
Aspergillus flavus/química , Endófitos/química , Sesquiterpenos/isolamento & purificação , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Sesquiterpenos/química , Sesquiterpenos/farmacologiaRESUMO
Six new nonadride derivatives (1-6) and three new spirocyclic anhydride derivatives (7-9) were isolated from the endophytic fungus Talaromyces purpurogenus obtained from fresh leaves of the toxic medicinal plant Tylophora ovata. The structures of these compounds were determined by spectroscopic analyses including 1D and 2D NMR, HRESIMS, and ECD techniques. Maleic anhydride derivatives 1-9 were evaluated for their in vitro anti-inflammatory activities. Compound 1 showed significant inhibitory activity against NO production in LPS-induced RAW264.7 cells with an IC50 value of 1.9 µM. Compounds 2 and 6 showed moderate inhibitory activities toward XOD and PTP1b, respectively, at 10 µM with inhibition rates of 67% and 76%.
Assuntos
Anidridos/química , Endófitos/química , Furanos/química , Talaromyces/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Fermentação , Hipoglicemiantes/farmacologia , Anidridos Maleicos/química , Camundongos , Estrutura Molecular , Folhas de Planta/microbiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Células RAW 264.7 , Tylophora/microbiologia , Xantina Oxidase/antagonistas & inibidoresRESUMO
1. This study aimed to investigate the pharmacokinetic interaction of the three ingredients in a traditional Chinese herbal formulation, Sini Decoction, and provide evidence for its compatibility mechanism. 2. First, the effect of liquiritin and 6-gingerol on the pharmacokinetic parameters of aconitine was investigated in rats by using a sensitive and reliable LC-MS/MS method. Then the Caco-2 cell monolayer model and Rhodamine-123 uptake assay were used to investigate the effect of liquiritin and 6-gingerol on the absorption of aconitine and the activity of P-gp. 3. The Cmax of aconitine increased significantly (p < 0.05) from 10.34 ± 1.99 to 17.68 ± 2.65 ng/mL with the pretreatment of liquiritin (20 mg/kg), and to 17.43 ± 0.96 ng/mL with 6-gingerol (20 mg/kg). When aconitine was co-administered with liquiritin and 6-gingerol, the Cmax and AUC(0-t) of aconitine increased approximately twofold, and while t1/2 only increased 1.2-fold. The Caco-2 cell monolayer model and Rhodamine-123 uptake assay indicated that both liquiritin and 6-gingerol could increase the absorption of aconitine by inhibiting the activity of P-gp. 4. These results indicated that both liquiritin and 6-gingerol could promote the absorption of aconitine and increase its drug concentration in blood by inhibiting the activity of P-gp, and it could also provide evidence for compatibility mechanism of the traditional Chinese herbal formula, Sini Decoction.
Assuntos
Aconitina/farmacocinética , Catecóis/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Álcoois Graxos/farmacocinética , Flavanonas/farmacocinética , Glucosídeos/farmacocinética , Animais , Células CACO-2 , Humanos , Medicina Tradicional Chinesa , RatosRESUMO
CONTEXT: Danshen tablets (DST), an effective traditional Chinese multi-herbal formula, are often combined with atorvastatin calcium (AC) for treating coronary heart disease in the clinic. OBJECTIVE: This study investigated the effects of DST on the pharmacokinetics of AC and the potential mechanism. MATERIALS AND METHODS: The pharmacokinetics of AC (1 mg/kg) with or without pretreatment of DST (100 mg/kg) were investigated using LC-MS/MS. The effects of DST (50 µg/mL) on the metabolic stability of AC were also investigated using rat liver microsome incubation systems. RESULTS: The results indicated that Cmax (23.87 ± 4.27 vs. 38.94 ± 5.32 ng/mL), AUC(0-t) (41.01 ± 11.32 vs. 77.28 ± 12.92 ng h/mL), and t1/2 (1.91 ± 0.18 vs. 2.74 ± 0.23 h) decreased significantly (p < 0.05) when DST and AC were co-administered, which suggested that DST might influence the pharmacokinetic behavior of AC when they are co-administered. The metabolic stability (t1/2) of AC was also decreased (25.7 ± 5.2 vs. 42.5 ± 6.1) with the pretreatment of DST. DISCUSSION AND CONCLUSIONS: This study indicated that the main components in DST could accelerate the metabolism of AC in rat liver microsomes and change the pharmacokinetic behaviors of AC. So these results showed that the herb-drug interaction between DST and AC might occur when they were co-administered. Therefore, the clinical dose of AC should be adjusted when DST and AC are co-administered.
Assuntos
Atorvastatina/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Interações Ervas-Drogas/fisiologia , Microssomos Hepáticos/efeitos dos fármacos , Salvia miltiorrhiza , Animais , Atorvastatina/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Cationic liposomes (CLs) are novel nonviral vectors widely used for delivering drugs or genes. However, applications of CLs are largely hampered by their cytotoxicity, partly because the potential mechanism underlying the cytotoxicity of CLs remains unclear. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CLs on HepG2 cells. Differential metabolites were identified and quantified using ultra-liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The toxicity of CLs on HepG2 cells was evaluated by multivariate data analysis and statistics. Additionally, CCK-8 assay, heatmap, pathway and co-expression network were carried out to explore the relations between the metabolites and the pathways. The results showed a dose-dependent toxic effect of CLs on HepG2 cells, with an IC50 value of 119.9 µg/mL. Multivariate statistical analysis identified 42 potential metabolites between CLs exposure and control groups. Pathway analysis showed significant changes in pathways involving amino acid metabolism, energy metabolism, lipid metabolism and oxidative stress in the CLs exposure group vs the control group. Metabolites related to the above-mentioned pathways included phenylalanine, methionine, creatine, oxalacetic acid, glutathione, oxidized glutathione, choline phosphate and several unsaturated fatty acids, indicating that cells were disturbed in amino acid metabolism, energy and lipid supply when CLs exposure-induced injury occurred. It is concluded that CLs may induce cytotoxicity by enhancing reactive oxygen species in vitro, affect the normal process of energy metabolism, disturb several vital signaling pathways and finally induce cell death.
Assuntos
Cátions/toxicidade , Cromatografia Líquida de Alta Pressão/métodos , Lipossomos/toxicidade , Espectrometria de Massas/métodos , Metabolômica/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Análise Multivariada , Reprodutibilidade dos TestesRESUMO
CONTEXT: Dihydromyricetin (DHM) is the most abundant and active flavonoid component isolated from Ampelopsis grossedentata (Hand-Mazz) W.T. Wang (Vitaceae) and it possesses numerous pharmacological activities. However, whether DHM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. MATERIALS AND METHODS: The inhibitory effects of DHM on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs). RESULTS: The results showed that DHM could inhibit the activity of CYP3A4, CYP2E1 and CYP2D6, with IC50 values of 14.75, 25.74 and 22.69 µM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that DHM was not only a non-competitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2E1 and CYP2D6, with Ki values of 6.06, 9.24 and 10.52 µM, respectively. In addition, DHM is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 12.17/0.057 min-1 µM-1. DISCUSSION AND CONCLUSION: The in vitro studies of DHM with CYP isoforms indicate that DHM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2D6. Further clinical studies are needed to evaluate the significance of this interaction.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Flavonóis/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Antioxidantes/farmacologia , Ligação Competitiva , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Humanos , Cinética , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismoRESUMO
Hypaconitine (HC) is one of the main aconitum alkaloids in Aconitum carmichaelii (AC), which is considered to be effective on cardiovascular disease, although it also has high toxicity. Sini Decoction (SND), composed of Aconitum carmichaelii, Glycyrrhiza uralensis and Zingiber officinale, is a traditional Chinese multi-herbal formula for recuperating the depleted yang. The aim of this study was to compare the pharmacokinetics of HC in rat plasma after oral administration of HC, AC extract and SND, and investigate the effect of other two herbal ingredients on absorption, metabolism and elimination of HC. A sensitive and specific LC-MS/MS method was developed to determine HC in rat plasma. Eighteen male Sprague-Dawley rats were randomly assigned to three groups: HC, AC and SND group. Plasma concentrations of HC were determined at designated points after oral administration, and main pharmacokinetic parameters were estimated. It was found that there was obvious difference (p < 0.05) on the pharmacokinetic parameters among three groups. Compared with AC group, Tmax, Cmax, k, AUC(0-24) and AUC(0-∞) decreased in SND group, while t1/2 and MRT had been lengthened, which indicated that the ingredients in other two herbs could influence the pharmacokinetic behavior of HC.
Assuntos
Aconitina/análogos & derivados , Aconitum/química , Medicamentos de Ervas Chinesas/administração & dosagem , Extratos Vegetais/administração & dosagem , Aconitina/administração & dosagem , Aconitina/sangue , Aconitina/farmacocinética , Administração Oral , Animais , Masculino , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Fatores de TempoRESUMO
Sophocarpine is a biologically active component obtained from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. The aim of this study was to develop a rapid and specific LC/MS method for the determination of sophocarpine and to explore its transcellular transport mechanism across the Caco-2 (the human colon adenocarcia cell lines) monolayer cell transwell model. Caco-2 cells were seeded on permeable polycarbonate membranes and incubated for 21 days. Before the experiment, the trans-epithelial electric resistance, integrity and alkaline phosphatase activity of the Caco-2 monolayers were verified and used in subsequent experiments. In the Caco-2 model constructed, many influencing factors were investigated, including time, concentration, pH and different protein inhibitors. The results suggested that sophocarpine was transported mainly by passive diffusion. The flux of sophocarpine was time- and concentration-dependent, and the pH also had an effect on its transportation. The PappBA was higher than PappAB , indicating that a polarized transport might exist for sophocarpine. MK-571 and reserpine, inhibitors of the multidrug resistance associated protein 2 and the breast cancer resistance protein, decreased the efflux of sophocarpine, while verapamil had no effect on its transport. These results revealed that sophocarpine is absorbed mainly by passive diffusion, and that a carrier-mediated mechanism is also involved in the transport of sophocarpine.
Assuntos
Alcaloides/metabolismo , Mucosa Intestinal/metabolismo , Alcaloides/análise , Transporte Biológico , Células CACO-2 , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Intestinos/química , Espectrometria de Massas , Modelos BiológicosRESUMO
Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin.
RESUMO
Long-term exposure to ultraviolet radiation may cause photoaging of skin tissues. Coreopsis tinctoria Nutt. riches a variety of flavonoids with strong antioxidant activities. In the present study, the main antioxidant flavonoid was isolated from C. tinctoria and identified as okanin by Mass spectrum and Nuclear Magnetic Resonance Spectroscopy. Okanin was found to effectively reduce the malondialdehyde content, increase various intracellular antioxidant enzyme activities, relieve epidermal hyperplasia and dermal damage caused by UVB irradiation, and increase the collagen fibers' content in the dorsal skin tissue of mice. Immunohistochemical analysis showed that okanin effectively counteracted the photoaging effect of UVB-induced by down-regulating IL-1, IL-6, TNF-α, and COX-2, and up-regulating COL-1, COL-3, and HYP expression. In addition, okanin can inhibit skin photoaging by regulating TNF-ß/Smad2-3, MAPK, P13K/AKT, and NF-κB signaling pathways. In particular, the three key markers of photoaging, MMP (MMP-1/-3/-9), were down-regulated and five collagen synthesis genes (COL1A1, COL3A1, COL5A2, COL6A1, and COL7A1) were up-regulated, underlines the direct anti-photoaging mechanism of okanin in preventing collagen degradation and promoting collagen synthesis. The current investigation provides new insights into the great potential of okanin in alleviating skin photoaging and lays theoretical references for the development ofanti-photoaging products.
Assuntos
Coreopsis , Envelhecimento da Pele , Pele , Raios Ultravioleta , Animais , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Camundongos , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Citocinas/metabolismo , Humanos , Colágeno/metabolismo , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genéticaRESUMO
Losartan is an effective anti-hypotension drug frequently used in clinic. Compound danshen tablet (CDST) is an important traditional Chinese multiherbal formula composed of Danshen, Sanqi and Bingpian, which is widely used for the treatment of cardiovascular and cerebrovascular diseases in China. More often, losartan and CDST are simultaneously used for the treatment of anti-hypertension in the clinic. The aim of this study was to compare the pharmacokinetics of losartan and EXP3174 after oral administration of single losartan and both losartan and CDST, and to investigate the influence of CDST on the pharmacokinetics of losartan and its metabolite EXP3174. Male Sprague-Dawley rats were randomly assigned to two groups: a losartan-only group and a losartan and CDST group. Plasma concentrations of losartan and EXP3174 were determined by LC-MS at designated points after drug administration, and the main pharmacokinetic parameters were estimated. It was found that there were significant differences (p < 0.05) between the pharmacokinetic parameters of losartan and EXP3174, which showed that CDST influenced the metabolism and excretion of losartan in vivo. The result could be used for clinical medication guidance of losartan and CDST to avoid the occurrence of adverse reactions.