Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Chem Rev ; 123(7): 3904-3943, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968046

RESUMO

Anisotropy is an important and widely present characteristic of materials that provides desired direction-dependent properties. In particular, the introduction of anisotropy into magnetic nanoparticles (MNPs) has become an effective method to obtain new characteristics and functions that are critical for many applications. In this review, we first discuss anisotropy-dependent ferromagnetic properties, ranging from intrinsic magnetocrystalline anisotropy to extrinsic shape and surface anisotropy, and their effects on the magnetic properties. We further summarize the syntheses of monodisperse MNPs with the desired control over the NP dimensions, shapes, compositions, and structures. These controlled syntheses of MNPs allow their magnetism to be finely tuned for many applications. We discuss the potential applications of these MNPs in biomedicine, magnetic recording, magnetotransport, permanent magnets, and catalysis.

2.
Nano Lett ; 24(19): 5847-5854, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700109

RESUMO

We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.

3.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391135

RESUMO

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Assuntos
Hiperuricemia , Peroxidase , Humanos , Peroxidase/uso terapêutico , Urato Oxidase/uso terapêutico , Povidona/uso terapêutico , Hiperuricemia/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Úrico/metabolismo , Oxirredutases , Corantes
4.
Acc Chem Res ; 56(12): 1591-1601, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37205747

RESUMO

ConspectusFunctional nanoparticles (NPs) have been studied extensively in the past decades for their unique nanoscale properties and their promising applications in advanced nanosciences and nanotechnologies. One critical component of studying these NPs is to prepare monodisperse NPs so that their physical and chemical properties can be tuned and optimized. Solution phase reactions have provided the most reliable processes for fabricating such monodisperse NPs in which metal-ligand interactions play essential roles in the synthetic controls. These interactions are also key to stabilizing the preformed NPs for them to show the desired electronic, magnetic, photonic, and catalytic properties. In this Account, we summarize some representative organic bipolar ligands that have recently been explored to control NP formation and NP functions. These include aliphatic acids, alkylphosphonic acids, alkylamines, alkylphosphines, and alkylthiols. This ligand group covers metal-ligand interactions via covalent, coordination, and electrostatic bonds that are most commonly employed to control NP sizes, compositions, shapes, and properties. The metal-ligand bonding effects on NP nucleation rate and growth can now be more thoroughly investigated by in situ spectroscopic and theoretical studies. In general, to obtain the desired NP size and monodispersity requires rational control of the metal/ligand ratios, concentrations, and reaction temperatures in the synthetic solutions. In addition, for multicomponent NPs, the binding strength of ligands to various metal surfaces needs to be considered in order to prepare these NPs with predesigned compositions. The selective ligand binding onto certain facets of NPs is also key to anisotropic growth of NPs, as demonstrated in the synthesis of one-dimensional nanorods and nanowires. The effects of metal-ligand interactions on NP functions are discussed in two aspects, electrochemical catalysis for CO2 reduction and electronic transport across NP assemblies. We first highlight recent advances in using surface ligands to promote the electrochemical reduction of CO2. Several mechanisms are discussed, including the modification of the catalyst surface environment, electron transfer through the metal-organic interface, and stabilization of the CO2 reduction intermediates, all of which facilitate selective CO2 reduction. These strategies lead to better understanding of molecular level control of catalysis for further catalyst optimization. Metal-ligand interaction in magnetic NPs can also be used to control tunneling magnetoresistance properties across NPs in NP assemblies by tuning NP interparticle spacing and surface spin polarization. In all, metal-ligand interactions have yielded particularly promising directions for tuning CO2 reduction selectivity and for optimizing nanoelectronics, and the concepts can certainly be extended to rationalize NP engineering at atomic/molecular precision for the fabrication of sensitive functional devices that will be critical for many nanotechnological applications.

5.
J Am Chem Soc ; 145(34): 19076-19085, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606196

RESUMO

Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.

6.
J Am Chem Soc ; 144(12): 5258-5262, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290736

RESUMO

It has been a long-standing challenge to create and identify the active sites of heterogeneous catalysts, because it is difficult to precisely control the interfacial chemistry at the molecular level. Here we report the synthesis and catalysis of a heteroleptic gold trihydride nanocluster, [Au22H3(dppe)3(PPh3)8]3+ [dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 = triphenylphosphine]. The Au22H3 core consists of two Au11 units bonded via six uncoordinated Au sites. The three H atoms bridge the six uncoordinated Au atoms and are found to play a key role in catalyzing electrochemical reduction of CO2 to CO with a 92.7% Faradaic efficiency (FE) at -0.6 V (vs RHE) and high reaction activity (134 A/gAu mass activity). The CO current density and FECO remained nearly constant for the CO2 reduction reaction for more than 10 h, indicating remarkable stability of the Au22H3 catalyst. The Au22H3 catalytic performance is among the best Au-based catalysts reported thus far for electrochemical reduction of CO2. Density functional theory (DFT) calculations suggest that the hydride coordinated Au sites are the active centers, which facilitate the formation of the key *COOH intermediate.

7.
J Am Chem Soc ; 143(7): 2660-2664, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33502185

RESUMO

While nanoscale mimics of peroxidase have been extensively developed over the past decade or so, their catalytic efficiency as a key parameter has not been substantially improved in recent years. Herein, we report a class of highly efficient peroxidase mimic-nickel-platinum nanoparticles (Ni-Pt NPs) that consist of nickel-rich cores and platinum-rich shells. The Ni-Pt NPs exhibit a record high catalytic efficiency with a catalytic constant (Kcat) as high as 4.5 × 107 s-1, which is ∼46- and 104-fold greater than the Kcat values of conventional Pt nanoparticles and natural peroxidases, respectively. Density functional theory calculations reveal that the unique surface structure of Ni-Pt NPs weakens the adsorption of key intermediates during catalysis, which boosts the catalytic efficiency. The Ni-Pt NPs were applied to an immunoassay of a carcinoembryonic antigen that achieved an ultralow detection limit of 1.1 pg/mL, hundreds of times lower than that of the conventional enzyme-based assay.

8.
J Am Chem Soc ; 143(4): 2115-2122, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493397

RESUMO

Enabling catalysts to promote multistep chemical reactions in a tandem fashion is an exciting new direction for the green chemistry synthesis of materials. Nanoparticle (NP) catalysts are particularly well suited for tandem reactions due to the diverse surface-active sites they offer. Here, we report that AuPd alloy NPs, especially 3.7 nm Au42Pd58 NPs, catalyze one-pot reactions of formic acid, diisopropoxy-dinitrobenzene, and terephthalaldehyde, yielding a very pure thermoplastic rigid-rod polymer, polybenzoxazole (PBO), with a molecular weight that is tunable from 5.8 to 19.1 kDa. The PBO films are more resistant to hydrolysis and possess thermal and mechanical properties that are superior to those of commercial PBO, Zylon. Cu NPs are also active in catalyzing tandem reactions to form PBO when formic acid is replaced with ammonia borane. Our work demonstrates a general approach to the green chemistry synthesis of rigid-rod polymers as lightweight structural materials for broad thermomechanical applications.

9.
J Am Chem Soc ; 143(37): 15335-15343, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34519488

RESUMO

We report a new form of catalyst based on ferromagnetic hexagonal-close-packed (hcp) Co nanosheets (NSs) for selective CO2RR to ethanal, CH3CHO. In all reduction potentials tested from -0.2 to -1.0 V (vs RHE) in 0.5 M KHCO3 solution, the reduction yields ethanal as a major product and ethanol/methanol as minor products. At -0.4 V, the Faradaic efficiency (FE) for ethanal reaches 60% with current densities of 5.1 mA cm-2 and mass activity of 3.4 A g-1 (total FE for ethanal/ethanol/methanol is 82%). Density functional theory (DFT) calculations suggest that this high CO2RR selectivity to ethanal on the hcp Co surface is attributed to the unique intralayer electron transfer, which not only promotes [OC-CO]* coupling but also suppresses the complete hydrogenation of the coupling intermediates to ethylene, leading to highly selective formation of CH3CHO.

10.
Nano Lett ; 20(1): 272-277, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31821008

RESUMO

While various effects of physicochemical parameters (e.g., size, facet, composition, and internal structure) on the catalytic efficiency of nanozymes (i.e., nanoscale enzyme mimics) have been studied, the strain effect has never been reported and understood before. Herein, we demonstrate the strain effect in nanozymes by using Pd octahedra and icosahedra with peroxidase-like activities as a model system. Strained Pd icosahedra were found to display 2-fold higher peroxidase-like catalytic efficiency than unstrained Pd octahedra. Theoretical analysis suggests that tensile strain is more beneficial to OH radical (a key intermediate for the catalysis) generation than compressive strain. Pd icosahedra are more active than Pd octahedra because icosahedra amplify the surface strain field. As a proof-of-concept demonstration, the strained Pd icosahedra were applied to an immunoassay of biomarkers, outperforming both unstrained Pd octahedra and natural peroxidases. The findings in this research may serve as a strong foundation to guide the design of high-performance nanozymes.


Assuntos
Nanoestruturas/química , Paládio/química , Peroxidases/química , Catálise , Oxirredução
11.
J Am Chem Soc ; 142(18): 8440-8446, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301612

RESUMO

We report a chemical method to synthesize size-controllable SmCo5 nanoparticles (NPs) and to stabilize the NPs against air oxidation by coating a layer of N-doped graphitic carbon (NGC). First 10 nm CoO and 5 nm Sm2O3 NPs were synthesized and aggregated in reverse micelles of oleylamine to form SmCo-oxide NPs with a controlled size (110, 150, or 200 nm). The SmCo-O NPs were then coated with polydopamine and thermally annealed to form SmCo-O/NGC NPs, which were further embedded in CaO matrix and reduced with Ca at 850 °C to give SmCo5/NGC NPs of 80, 120, or 180 nm, respectively. The 10 nm NGC coating efficiently stabilized the SmCo5 NPs against air oxidation at room temperature or at 100 °C. The magnetization value of the 180 nm SmCo5/NGC NPs was stabilized at 86.1 emu/g 5 days after air exposure at room temperature and dropped only 1.7% 48 h after air exposure at 100 °C. The stable SmCo5/NGC NPs were aligned magnetically in an epoxy resin, showing a square-like hysteresis behavior with their Hc reaching 51.1 kOe at 150 K and 21.9 kOe at 330 K and their Mr stabilized at around 84.8 emu/g. Our study demonstrates a new strategy for synthesizing and stabilizing SmCo5 NPs for high-performance nanomagnet applications in a broad temperature range.

12.
J Am Chem Soc ; 142(45): 19209-19216, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124818

RESUMO

Tuning the performance of nanoparticle (NP) catalysts by controlling the NP surface strain has evolved as an important strategy to optimize NP catalysis in many energy conversion reactions. Here, we present our new study on using an eigenforce model to predict and experiments to verify the strain-induced catalysis enhancement of the oxygen reduction reaction (ORR) in the presence of L10-CoMPt NPs (M = Mn, Fe, Ni, Cu, Ni). The eigenforce model allowed us to predict anisotropic (that is, two-dimensional) strain levels on distorted Pt(111) surfaces. Experimentally, by preparing a series of 5 nm L10-CoMPt NPs, we could push the ORR catalytic activity of these NPs toward the optimum region of the theoretical two-dimensional volcano plot predicted for L10-CoMPt. The best ORR catalyst in the alloy NP series we studied is L10-CoNiPt, which has a mass activity of 3.1 A/mgPt and a specific activity of 9.3 mA/cm2 at room temperature with only 15.9% loss of mass activity after 30 000 cycles at 60 °C in 0.1 M HClO4.


Assuntos
Nanopartículas Metálicas/química , Oxigênio/química , Ligas/química , Catálise , Teoria da Densidade Funcional , Oxirredução
13.
Acc Chem Res ; 52(7): 2015-2025, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251036

RESUMO

Intermetallic nanoparticles (NPs) described in this Account are a class of metallic alloy NPs within which metal atoms are bonded via strong d-orbital interaction and ordered anisotropically in a specific crystallographic direction. Compared to the common metallic alloy NPs with solid solution structure, intermetallic NPs are generally more stable against chemical oxidation and etching. The strict stoichiometry requirement, well-defined atom binding environment and layered atomic arrangement also make intermetallic NPs an ideal model for understanding their physical and catalytic properties. This account summarizes the synthetic principles and strategies developed to obtain monodisperse intermetallic NPs, especially tetragonal L10-NPs. The thermodynamics and kinetics involved in the conversion between disordered and ordered structures are briefly discussed. The synthetic methods are grouped into two slightly different categories: solution-phase synthesis followed by solid state annealing and direct solution-phase synthesis. In the former method, high-surface-area supports are often needed to disperse NPs and to prevent them from aggregation, while in the latter method such supports are not required since the structure conversion temperature is lowered to a level that the conversion can proceed in the solution reaction condition. In any of these two synthetic approaches, various factors influencing intermetallic structure formation should be carefully controlled to ensure more complete structural transition within NPs. Using representative synthetic examples, we highlight the strategies explored to facilitate the formation of intermetallic structure, including the introduction of vacancies/defects within NP structures and the control of atom addition rate/seed-mediated diffusion to lower the energy barrier. These strategies illustrate how the concept of thermodynamics and kinetics can be used to design the synthesis of intermetallic NPs. Additionally, to correlate NP structure and catalysis, we introduce briefly the d-band theory to explain how the electronic, strain and ensemble effects can be used to tune NP catalysis. We focus specifically on Pt-, Pd-, and Au-based L10-NPs and demonstrate how these L10-NPs could be prepared to show much enhanced catalysis for electrochemical reactions, including oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and thermo-oxidation reaction of CO. Due to the enhanced metal atom stability in the "sandwich"-type structure, the roles of the first-row transition metal atoms in catalysis are better understood to achieve catalysis optimization. This concept can be extended to other alloy NPs, demonstrating great potentials in using intermetallic structures to control NP reduction and oxidation catalysis for important chemical and energy applications.

14.
Chemistry ; 26(30): 6757-6766, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31529572

RESUMO

Permanent magnets are a class of critical materials for information storage, energy storage, and other magneto-electronic applications. Compared with conventional bulk magnets, magnetic nanoparticles (MNPs) show unique size-dependent magnetic properties, which make it possible to control and optimize their magnetic performance for specific applications. The synthesis of MNPs has been intensively explored in recent years. Among different methods developed thus far, chemical synthesis based on solution-phase reactions has attracted much attention owing to its potential to achieve the desired size, morphology, structure, and magnetic controls. This Minireview focuses on the recent chemical syntheses of strongly ferromagnetic MNPs (Hc >10 kOe) of rare-earth metals and FePt intermetallic alloys. It further discusses the potential of enhancing the magnetic performance of MNP composites by assembly of hard and soft MNPs into exchange-coupled nanocomposites. High-performance nanocomposites are key to fabricating super-strong permanent magnets for magnetic, electronic, and energy applications.

15.
Nano Lett ; 19(12): 8658-8663, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682758

RESUMO

Understanding the Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) under ambient conditions is both fundamentally interesting and technologically important for selective CO2RR to hydrocarbons. Current Cu catalysts studied for the CO2RR can show high activity but tend to yield a mixture of different hydrocarbons, posing a serious challenge on using any of these catalysts for selective CO2RR. Here, we report a new perovskite-type copper(I) nitride (Cu3N) nanocube (NC) catalyst for selective CO2RR. The 25 nm Cu3N NCs show high CO2RR selectivity and stability to ethylene (C2H4) at -1.6 V (vs reversible hydrogen electrode (RHE)) with the Faradaic efficiency of 60%, mass activity of 34 A/g, and C2H4/CH4 molar ratio of >2000. More detailed electrochemical characterization, X-ray photon spectroscopy, and density functional theory calculations suggest that the high CO2RR selectivity is likely a result of (100) Cu(I) stabilization by the Cu3N structure, which favors CO-CHO coupling on the (100) Cu3N surface, leading to selective formation of C2H4. Our study presents a good example of utilizing metal nitrides as highly efficient nanocatalysts for selective CO2RR to hydrocarbons that will be important for sustainable chemistry/energy applications.

16.
Angew Chem Int Ed Engl ; 59(37): 15933-15936, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32453881

RESUMO

An efficient CuPd nanoparticle (NP) catalyst (3 nm CuPd NPs deposited on carbon support) is designed for catalyzing electrochemical allylic alkylation in water/isopropanol (1:1 v/v) and 0.2 m KHCO3 solution at room temperature. The Pd catalysis was Pd/Cu composition-dependent, and CuPd NPs with a Pd/Cu ratio close to one are the most efficient catalyst for the selective cross-coupling of alkyl halides and allylic halides to form C-C hydrocarbons with product yields reaching up to 99 %. This NP-catalyzed electrochemical allylic alkylation expands the synthetic scope of cross-coupling reactions and can be further extended to other organic reaction systems for developing green chemistry electrosynthesis methods.

17.
Chemphyschem ; 20(1): 23-30, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30444021

RESUMO

Self-assembly of nanoparticles (NPs) is at the heart of nanotechnology, and has shown many potential applications in fabricating nanodevices with highly controlled functionality. Two-dimensional (2D) arrays of NPs can provide a thin and uniform NP array with each NP being exposed on the surface to maximize NP catalysis. This minireview summarizes the recent progress on the fabrication and application of 2D NP arrays. It conveys the important message to readers that creation of libraries of NP arrays with varying catalytic strengths is an exciting direction in catalysis. This approach can be used to solve complicated catalytic problems in which multiple chemical reactions need to be catalyzed in a single reaction vessel.

18.
Angew Chem Int Ed Engl ; 58(41): 14509-14512, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31402552

RESUMO

We report a flame-reaction method to synthesize high-performance Smx Coy (x=1, y=5; x=2, y=17) particles on a multigram scale. This flame reaction allows the controlled decomposition of Sm(NO3 )3 and Co(NO3 )2 to 320 nm SmCo-O (SmCoO3 + Co3 O4 ) particles. A 5.8 g sample of SmCo3.8 -O particles was coated with CaO and then reduced at 900 °C by Ca to give 4.2 g of 260 nm SmCo5 particles. The SmCo5 particles are strongly ferromagnetic and the aligned particles in epoxy resin exhibit a large room-temperature coercivity (Hc ) of 41.8 kOe and giant (BH)max (maximum magnetic energy product) of 19.6 MGOe, the highest value ever reported for SmCo5 made by chemical methods. This synthesis can be extended to synthesize Sm2 Co17 particles, providing a general approach to scaling up the synthesis of high-performance Smx Coy nanomagnets for permanent magnet applications.

19.
Angew Chem Int Ed Engl ; 58(40): 14100-14103, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314934

RESUMO

We report a new strategy to prepare a composite catalyst for highly efficient electrochemical CO2 reduction reaction (CO2 RR). The composite catalyst is made by anchoring Au nanoparticles on Cu nanowires via 4,4'-bipyridine (bipy). The Au-bipy-Cu composite catalyzes the CO2 RR in 0.1 m KHCO3 with a total Faradaic efficiency (FE) reaching 90.6 % at -0.9 V to provide C-products, among which CH3 CHO (25 % FE) dominates the liquid product (HCOO- , CH3 CHO, and CH3 COO- ) distribution (75 %). The enhanced CO2 RR catalysis demonstrated by Au-bipy-Cu originates from its synergistic Au (CO2 to CO) and Cu (CO to C-products) catalysis which is further promoted by bipy. The Au-bipy-Cu composite represents a new catalyst system for effective CO2 RR conversion to C-products.

20.
Angew Chem Int Ed Engl ; 58(2): 602-606, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30414238

RESUMO

We report a general chemical approach to synthesize strongly ferromagnetic rare-earth metal (REM) based SmCo and SmFeN nanoparticles (NPs) with ultra-large coercivity. The synthesis started with the preparation of hexagonal CoO+Sm2 O3 (denoted as SmCo-O) multipods via decomposition of Sm(acac)3 and Co(acac)3 in oleylamine. These multipods were further reduced with Ca at 850 °C to form SmCo5 NPs with sizes tunable from 50 to 200 nm. The 200 nm SmCo5 NPs were dispersed in ethanol, and magnetically aligned in polyethylene glycol (PEG) matrix, yielding a PEG-SmCo5 NP composite with the room temperature coercivity (Hc ) of 49.2 kOe, the largest Hc among all ferromagnetic NPs ever reported, and saturated magnetic moment (Ms ) of 88.7 emu g-1 , the highest value reported for SmCo5 NPs. The method was extended to synthesize other ferromagnetic NPs of Sm2 Co17 , and, for the first time, of Sm2 Fe17 N3 NPs with Hc over 15 kOe and Ms reaching 127.9 emu g-1 . These REM based NPs are important magnetic building blocks for fabrication of high-performance permanent magnets, flexible magnets, and printable magnetic inks for energy and sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA