Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602738

RESUMO

Cerebral small vessel disease is the one of the most prevalent causes of vascular cognitive impairment. We aimed to find objective and process-based indicators related to memory function to assist in the detection of memory impairment in patients with cerebral small vessel disease. Thirty-nine cerebral small vessel disease patients and 22 healthy controls were invited to complete neurological examinations, neuropsychological assessments, and eye tracking tasks. Eye tracking indicators were recorded and analyzed in combination with imaging features. The cerebral small vessel disease patients scored lower on traditional memory task and performed worse on eye tracking memory task performance compared to the healthy controls. The cerebral small vessel disease patients exhibited longer visit duration and more visit count within areas of interest and targets and decreased percentage value of total visit duration on target images to total visit duration on areas of interest during decoding stage among all levels. Our results demonstrated the cerebral small vessel disease patients performed worse in memory scale and eye tracking memory task, potentially due to their heightened attentional allocation to nontarget images during the retrieval stage. The eye tracking memory task could provide process-based indicators to be a beneficial complement to memory assessment and new insights into mechanism of memory impairment in cerebral small vessel disease patients.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Humanos , Tecnologia de Rastreamento Ocular , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Cognição
2.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806818

RESUMO

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Assuntos
Claudinas , Células Endoteliais , Pulmão , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Claudinas/metabolismo , Claudinas/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Claudina-4/metabolismo , Claudina-4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Endotélio Vascular/patologia , Células Cultivadas , Permeabilidade Capilar , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/patologia , Citocinas/metabolismo
3.
World J Surg Oncol ; 22(1): 87, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582834

RESUMO

BACKGROUND: To investigate the short-term and long-term outcomes of preserving the celiac branch of the vagus nerve during laparoscopic distal gastrectomy. METHODS: A total of 149 patients with prospective diagnosis of gastric cancer who underwent laparoscopic-assisted distal gastrectomy (LADG) combined with Billroth-II anastomosis and D2 lymph node dissection between 2017 and 2018 were retrospectively analyzed. The patients were divided into the preserved LADG group (P-LADG, n = 56) and the resected LADG group (R-LADG, n = 93) according to whether the vagus nerve celiac branch was preserved. We selected 56 patients (P-LADG, n = 56) with preservation of the celiac branch of the vagus nerve and 56 patients (R-LADG, n = 56) with removal of the celiac branch of the vagus nerve by propensity-matched score method. Postoperative nutritional status, weight change, short-term and long-term postoperative complications, and gallstone formation were evaluated in both groups at 5 years of postoperative follow-up. The status of residual gastritis and bile reflux was assessed endoscopically at 12 months postoperatively. RESULTS: The incidence of diarrhea at 5 years postoperatively was lower in the P-LADG group than in the R-LADG group (p < 0.05). In the multivariate logistic analysis, the removal of vagus nerve celiac branch was an independent risk factor for the occurrence of postoperative diarrhea (odds ratio = 3.389, 95% confidential interval = 1.143-10.049, p = 0.028). In the multivariate logistic analysis, the removal of vagus nerve celiac branch was an independent risk factor for the occurrence of postoperative diarrhea (odds ratio = 4.371, 95% confidential interval = 1.418-13.479, p = 0.010). CONCLUSIONS: Preservation of the celiac branch of the vagus nerve in LADG reduced the incidence of postoperative diarrhea postoperatively in gastric cancer. TRIAL REGISTRATION: This study was registered with the Ethics Committee of the First Affiliated Hospital of Dalian Medical University in 2014 under the registration number: LCKY2014-04(X).


Assuntos
Laparoscopia , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Estudos de Coortes , Estudos Retrospectivos , Estudos Prospectivos , Incidência , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Nervo Vago/patologia , Nervo Vago/cirurgia , Diarreia/epidemiologia , Diarreia/etiologia , Diarreia/prevenção & controle , Resultado do Tratamento
4.
Virol J ; 20(1): 79, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101205

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen, characterized by its genetic and antigenic variation. The PRRSV vaccine is widely used, however, the unsatisfied heterologic protection and the risk of reverse virulence raise the requirement to find some new anti-PRRSV strategies for disease control. Tylvalosin tartrate is used to inhibit PRRSV in the field non-specifically, however, the mechanism is still less known. METHODS: The antiviral effects of Tylvalosin tartrates from three producers were evaluated in a cell inoculation model. Their safety and efficacy concentrations, and effecting stage during PRRSV infection were analyzed. And, the Tylvalosin tartrates regulated genes and pathways which are potentially related to the anti-viral effect were further explored by using transcriptomics analysis. Last, the transcription level of six anti-virus-related DEGs was selected to confirm by qPCR, and the expression level of HMOX1, a reported anti-PRRSV gene, was proved by western blot. RESULTS: The safety concentrations of Tylvalosin tartrates from three different producers were 40 µg/mL (Tyl A, Tyl B, and Tyl C) in MARC-145 cells and 20 µg/mL (Tyl A) or 40 µg/mL (Tyl B and Tyl C) in primary pulmonary alveolar macrophages (PAMs) respectively. Tylvalosin tartrate can inhibit PRRSV proliferation in a dose-dependent manner, causing more than 90% proliferation reduction at 40 µg/mL. But it shows no virucidal effect, and only achieves the antiviral effect via long-term action on the cells during the PRRSV proliferation. Furthermore, GO terms and KEGG pathway analysis was carried out based on the RNA sequencing and transcriptomic data. It was found that the Tylvalosin tartrates can regulate the signal transduction, proteolysis, and oxidation-reduction process, as well as some pathways such as protein digestion and absorption, PI3K-Akt signaling, FoxO signaling, and Ferroptosis pathways, which might relate to PRRSV proliferation or host innate immune response, but further studies still need to confirm it. Among them, six antivirus-related genes HMOX1, ATF3, FTH1, FTL, NR4A1, and CDKN1A were identified to be regulated by Tylvalosin tartrate, and the increased expression level of HMOX1 was further confirmed by western blot. CONCLUSIONS: Tylvalosin tartrate can inhibit PRRSV proliferation in vitro in a dose-dependent manner. The identified DEGs and pathways in transcriptomic data will provide valuable clues for further exploring the host cell restriction factors or anti-PRRSV target.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Tartaratos/metabolismo , Tartaratos/farmacologia , Transcriptoma , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Macrófagos Alveolares , Replicação Viral
5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142338

RESUMO

Novel radar-wave absorption nanocomposites are developed by filling the nanoscaled ferrites of strontium ferroxide (SrFe12O19) and carbonyl iron (CIP) individually into the highly flexible liquid silicone rubber (LSR) considered as dielectric matrix. Nanofiller dispersivities in SrFe12O19/LSR and CIP/LSR nanocomposites are characterized by scanning electronic microscopy, and the mechanical properties, electric conductivity, and DC dielectric-breakdown strength are tested to evaluate electrical insulation performances. Radar-wave absorption performances of SrFe12O19/LSR and CIP/LSR nanocomposites are investigated by measuring electromagnetic response characteristics and radar-wave reflectivity, indicating the high radar-wave absorption is dominantly derived from magnetic losses. Compared with pure LSR, the SrFe12O19/LSR and CIP/LSR nanocomposites represent acceptable reductions in mechanical tensile and dielectric-breakdown strengths, while rendering a substantial nonlinearity of electric conductivity under high electric fields. SrFe12O19/LSR nanocomposites provide high radar-wave absorption in the frequency band of 11~18 GHz, achieving a minimum reflection loss of -33 dB at 11 GHz with an effective absorption bandwidth of 10 GHz. In comparison, CIP/LSR nanocomposites realize a minimum reflection loss of -22 dB at 7 GHz and a remarkably larger effective absorption bandwidth of 3.9 GHz in the lower frequency range of 2~8 GHz. Radar-wave transmissions through SrFe12O19/LSR and CIP/LSR nanocomposites in single- and double-layered structures are analyzed with CST electromagnetic-field simulation software to calculate radar reflectivity for various absorbing-layer thicknesses. Dual-layer absorbing structures are modeled by specifying SrFe12O19/LSR and CIP/LSR nanocomposites, respectively, as match and loss layers, which are predicted to acquire a significant improvement in radar-wave absorption when the thicknesses of match and loss layers approach 1.75 mm and 0.25 mm, respectively.


Assuntos
Radar , Elastômeros de Silicone , Eletricidade , Ferro/química , Estrôncio
6.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012715

RESUMO

In order to restrain electric-stress impacts of water micro-droplets in insulation defects under alternating current (AC) electric fields in crosslinked polyethylene (XLPE) material, the present study represents chemical graft modifications of introducing chloroacetic acid allyl ester (CAAE) and maleic anhydride (MAH) individually as two specific polar-group molecules into XLPE material with peroxide melting approach. The accelerated water-tree aging experiments are implemented by means of a water-blade electrode to measure the improved water resistance and the affording mechanism of the graft-modified XLPE material in reference to benchmark XLPE. Melting−crystallization process, dynamic viscoelasticity and stress-strain characteristics are tested utilizing differential scanning calorimeter (DSC), dynamic thermomechanical analyzer (DMA) and electronic tension machine, respectively. Water-tree morphology is observed for various aging times to evaluate dimension characteristics in water-tree developing processes. Monte Carlo molecular simulations are performed to calculate free-energy, thermodynamic phase diagram, interaction parameter and mixing energy of binary mixing systems consisting of CAAE or MAH and water molecules to evaluate their thermodynamic miscibility. Water-tree experiments indicate that water-tree resistance to XLPE can be significantly improved by grafting CAAE or MAH, as indicated by reducing the characteristic length of water-trees from 120 to 80 µm. Heterogeneous nucleation centers of polyethylene crystallization are rendered by the grafted polar-group molecules to ameliorate crystalline microstructures, as manifested by crystallinity increment from 33.5 to 36.2, which favors improving water-tree resistance and mechanical performances. The highly hydrophilic nature of CAAE can evidently inhibit water molecules from aggregating into water micro-droplets in amorphous regions between crystal lamellae, thus acquiring a significant promotion in water-tree resistance of CAAE-modified XLPE. In contrast, the grafted MAH molecules can enhance van der Waals forces between polyethylene molecular chains in amorphous regions much greater than the grafted CAAE and simultaneously act as more efficient crystallization nucleation centers to ameliorate crystalline microstructures of XLPE, resulting in a greater improvement (relaxation peak magnitude increases by >10%) of mechanical toughness in amorphous phase, which primarily accounts for water-tree resistance promotion.


Assuntos
Prótese de Quadril , Polietileno , Anidridos Maleicos , Polietileno/química , Falha de Prótese , Água
7.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806471

RESUMO

Although histone lysine methylation has been studied in thale cress (Arabidopsis thaliana (L.) Heynh.) and rice (Oryza sativa L.) in recent years, its function in maize (Zea mays L.) remains poorly characterized. To better understand the function of histone lysine methylation in maize, SDG102, a H3 lysine 36 (H3K36) methylase, was chosen for functional characterization using overexpressed and knockout transgenic plants. SDG102-deficiency in maize caused multiple phenotypes including yellow leaves in seedlings, late-flowering, and increased adult plant height, while the overexpression of SDG102 led to reduced adult plant height. The key flowering genes, ZCN8/ZCN7 and MADS4/MADA67, were downregulated in SDG102-deficient plants. Chromatin immunoprecipitation (ChIP) experiments showed that H3 lysine 36 trimethylation (H3K36me3) levels were reduced at these loci. Perturbation of SDG102 expression caused the misexpression of multiple genes. Interestingly, the overexpression or knockout of SDG102 also led to genome-wide decreases and increases in the H3K36me3 levels, respectively. Together, our results suggest that SDG102 is a methyltransferase that catalyzes the trimethylation of H3K36 of many genes across the maize genome, which are involved in multiple biological processes including those controlling flowering time.


Assuntos
Arabidopsis , Fenômenos Biológicos , Oryza , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Oryza/genética , Zea mays/genética , Zea mays/metabolismo
8.
Immunol Invest ; 50(8): 964-976, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32811241

RESUMO

OBJECTIVE: Conflicting results have been reported on the association between blood level of interleukin-6 and adverse outcomes in patients with acute coronary syndrome (ACS). The current meta-analysis aimed to evaluate the predictive utility of elevated blood interleukin-6 level in patients with ACS. METHODS: A systematically literature search was performed using PubMed and Embase databases up to December 31, 2019. Observational studies or post hoc analysis of randomized controlled trials investigating the values of blood interleukin-6 level for predicting major adverse cardiovascular events (MACE including death, re-infarction, revascularization, angina, heart failure, malignant arrhythmia, or stroke), all-cause mortality or cardiovascular mortality in ACS patients were eligible. The predictive values were summarized by pooling the multivariable-adjusted risk ratio (RR) and 95% confidence intervals (CI) for the highest versus lowest category of interleukin-6 level. RESULTS: Thirteen studies enrolling 30,289 patients with ACS were included. When comparing the highest with lowest category of interleukin-6 level, the pooled RR was 1.29 (95% CI 1.12-1.48) for MACE, 1.50 (95% CI 1.35-1.67) for all-cause mortality, and 1.55 (95% CI 1.06-2.28) for cardiovascular mortality, respectively. Moreover, the predictive values of interleukin-6 level on MACE were consistently found in different study designs, subtypes of patients, sample sizes, follow-up duration, and cutoff value of interleukin-6 elevation subgroups. CONCLUSION: Increased blood level of interleukin-6may be independently associated with higher risk of MACE, cardiovascular and all-cause mortality in patients with ACS. Measurement of blood interleukin-6 level has potential to improve risk stratification of ACS.


Assuntos
Síndrome Coronariana Aguda , Interleucina-6 , Síndrome Coronariana Aguda/diagnóstico , Humanos , Razão de Chances , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Aging Clin Exp Res ; 33(6): 1477-1486, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32766928

RESUMO

BACKGROUND: Geriatric Nutritional Risk Index (GNRI) is a promising tool for predicting nutrition-related complications. This meta-analysis sought to determine the prognostic utility of GNRI in elderly patients with heart failure. METHODS: We comprehensively searched the PubMed and Embase databases from their inception to July 2019. Original studies investigating the prognostic value of GNRI in patients with heart failure were included. Outcome of interests were all-cause mortality and major cardiovascular events. The prognostic value of GNRI was expressed as risk ratios (RR) with 95% confidence intervals (CI) for the lowest versus the highest GNRI category or continuous GNRI analysis. RESULTS: Eleven articles (10 studies) involving 10,589 elderly heart failure patients were included. Meta-analysis indicated that heart failure patients with the lowest GNRI had an increased risk of all-cause mortality (RR 2.11; 95% CI 1.72-2.58) and major cardiovascular events (RR 2.00; 95% CI 1.24-3.22) after adjustment for confounding. In addition, each unit reduction in GNRI significantly increased 6% risk of all-cause mortality. CONCLUSION: Lower GNRI independently predicts all-cause mortality and major cardiovascular events in elderly patients with heart failure. Determination of nutritional status using GNRI may improve risk stratification in elderly patients with heart failure.


Assuntos
Insuficiência Cardíaca , Desnutrição , Idoso , Avaliação Geriátrica , Humanos , Avaliação Nutricional , Estado Nutricional , Prognóstico , Medição de Risco , Fatores de Risco
10.
Microb Pathog ; 143: 104113, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32130979

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α) polymorphisms might influence predisposition to periodontitis, but the results of already published studies were still controversial and ambiguous. So the authors designed this meta-analysis to more precisely estimate relationship between TNF-α polymorphisms and periodontitis by pooling the results of already published related studies. METHODS: The authors searched Pubmed, Embase, Web of Science and CNKI for already published studies. Forty-five already published studies were pooled analyzed in this meta-analysis. RESULTS: The crude pooled meta-analyses results showed that distributions of TNF-α rs361525, rs1800629, rs1800630 and rs1799964 polymorphisms among patients and controls differed significantly, which suggested that these polymorphisms might influence predisposition to periodontitis in the general population. We also got similar significant results for rs361525, rs1800629, rs1800630 and rs1799964 polymorphisms in subgroup analyses in Asians. The crude findings were further subjected to Bonferroni correction to account for multiple comparisons. For rs361525, rs1800629 and rs1799964 polymorphisms, basically no changes of results were detected. But for rs1800630 polymorphism, the results were no longer significant after adjustment for multiple comparisons. CONCLUSIONS: This meta-analysis suggested that TNF-α rs361525, rs1800629 and rs1799964 polymorphisms might influence predisposition to periodontitis, particularly in Asians.


Assuntos
Predisposição Genética para Doença/genética , Periodontite/genética , Polimorfismo de Nucleotídeo Único/genética , Fator de Necrose Tumoral alfa/genética , Humanos
11.
Bioprocess Biosyst Eng ; 43(4): 701-710, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31844973

RESUMO

Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over traditional methods. However, beefy meaty peptide (BMP), the focus of umami peptides, has neither been concerned in its safe expression nor its overproduction in fermenter. In this study, multi-copy BMP (8BMP) was successfully auto-inducibly expressed and efficiently produced in Bacillus subtilis 168. First, 8BMP was successfully auto-inducibly expressed with srfA promoter in B. subtilis 168. Further, the efficient production of 8BMP was researched in a 5-L fermenter: the fermentation optimized by Pontryagin's maximum principle obtained the highest 8BMP yield (3.16 g/L), which was 1.2 times and 1.8 times than that of two-stage feeding cultivation (2.67 g/L) and constant-rate feeding cultivation (1.75 g/L), respectively. Overall, the auto-inducible expression of 8BMP in B. subtilis and fermentation with Pontryagin's maximum principle are conductive for overproduction of BMP and other peptides.


Assuntos
Bacillus subtilis , Reatores Biológicos , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Biossíntese Peptídica , Peptídeos , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Regiões Promotoras Genéticas
12.
Sensors (Basel) ; 20(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150912

RESUMO

With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.

13.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878192

RESUMO

Space charge characteristics of cross-linked polyethylene (XLPE) at elevated temperatures have been evidently improved by the graft modifications with ultraviolet (UV) initiation technique, which can be efficiently utilized in industrial cable manufactures. Maleic anhydride (MAH) of representative cyclic anhydride has been successfully grafted onto polyethylene molecules through UV irradiation process. Thermal stimulation currents and space charge characteristics at the elevated temperatures are coordinately analyzed to elucidate the trapping behavior of blocking charge injection and impeding carrier transport which is caused by grafting MAH. It is also verified from the first-principles calculations that the bound states as charge carrier traps can be introduced by grafting MAH onto polyethylene molecules. Compared with pure XLPE, the remarkably suppressed space charge accumulations at high temperatures have been achieved in XLPE-g-MAH. The polar groups on the grafted MAH can provide deep traps in XLPE-g-MAH, which will increase charge injection barrier by forming a charged layer of Coulomb-potential screening near electrodes and simultaneously reduce the electrical mobility of charge carriers by trap-carrier scattering, resulting in an appreciable suppression of space charge accumulations inside material. The exact consistence of experimental results with the quantum mechanics calculations demonstrates a promising routine for the modification strategy of grafting polar molecules with UV initiation technique in the development of high-voltage DC cable materials.


Assuntos
Anidridos Maleicos/química , Polietileno/química , Temperatura , Raios Ultravioleta , Modelos Moleculares , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Molecules ; 25(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806568

RESUMO

Water-tree resistances of styrene block copolymer/polypropylene (SEBS/PP) composites are investigated by characterizing crystallization structures in correlation with the dynamic mechanical properties to elucidate the micro-structure mechanism of improving insulation performances, in which the accelerated aging experiments of water trees are performed with water-knife electrodes. The water-tree morphology in spherulites, melt-crystallization characteristics and lamella structures of the composite materials are observed and analyzed by polarizing microscopy (PLM), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. Dynamic relaxation and stress-strain characteristics are specifically studied by means of a dynamic thermomechanical analyzer (DMA) and electronic tension machine, respectively. No water-tree aging occurs in both the highly crystalline PP and the noncrystalline SEBS elastomer, while the water trees arising in SEBS/PP composites still has a significantly lower size than that in low-density polyethylene (LDPE). Compared with LDPE, the PP matrix of the SEBS/PP composite represent a higher crystallinity with a larger crystallization size in consistence with its higher mechanical strength and lower dynamic relaxation loss. SEBS molecules agglomerate as a "island" phase, and PP molecules crystallize into thin and short lamellae in composites, leading to the blurred spherulite boundary and the appreciable slips between lamellae under external force. The high crystallinity of the PP matrix and the strong resistance to slips between lamellae in the SEBS/PP composite essentially account for the remarkable inhibition on water-tree growth.


Assuntos
Polipropilenos/química , Poliestirenos/química , Água/química , Cristalização
15.
Molecules ; 25(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825451

RESUMO

In order to inhibit the outward-migrations of photo-initiator molecules in the ultraviolet-initiated crosslinking process and simultaneously improve the crosslinking degree and dielectric properties of crosslinked polyethylene (XLPE) materials, we have specifically developed surface-modified-SiO2/XLPE nanocomposites with the silica nanofillers that have been functionalized through chemical surface modifications. With the sulfur-containing silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), the functional monomers of auxiliary crosslinker triallyl isocyanurate (TAIC) have been successfully grafted on the silica surface through thiol-ene click chemistry reactions. The grafted functional groups are verified by molecular characterizations of Fourier transform infrared spectra and nuclear magnetic resonance hydrogen spectra. Scanning electronic microscopy (SEM) indicates that the functionalized silica nanoparticles have been filled into polyethylene matrix with remarkably increased dispersivity compared with the neat silica nanoparticles. Under ultraviolet (UV) irradiation, the high efficient crosslinking reactions of polyethylene molecules are facilitated by the auxiliary crosslinkers that have been grafted onto the surfaces of silica nanofillers in polyethylene matrix. With the UV-initiated crosslinking technique, the crosslinking degree, insulation performance, and space charge characteristics of SiO2/XLPE nanocomposites are investigated in comparison with the XLPE material. Due to the combined effects of the high dispersion of nanofillers and the polar-groups of TAIC grafted on the surfaces of SiO2 nanofillers, the functionlized-SiO2/XLPE nanocomposite with an appropriate filling content represents the most preferable crosslinking degree with multiple improvements in the space charge characteristics and direct current dielectric breakdown strength. Simultaneously employing nanodielectric technology and functional-group surface modification, this study promises a modification strategy for developing XLPE nanocomposites with high mechanical and dielectric performances.


Assuntos
Nanocompostos/química , Polietileno/química , Dióxido de Silício/química , Raios Ultravioleta , Química Click
16.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927806

RESUMO

The water-resistant characteristics of ultraviolet crosslinked polyethylene (UV-XLPE) are investigated specially for the dependence on the hydrophilicities of auxiliary crosslinkers, which is significant to develop high-voltage insulating cable materials. As auxiliary crosslinking agents of polyethylene, triallyl isocyanurate (TAIC), trimethylolpropane trimethacrylate (TMPTMA), and N,N'-m-phenylenedimaleimide (HAV2) are individually adopted to prepared XLPE materials with the UV-initiation crosslinking technique, for the study of water-tree resistance through the accelerating aging experiments with water blade electrode. The stress-strain characteristics and dynamic viscoelastic properties of UV-XLPE are tested by the electronic tension machine and dynamic thermomechanical analyzer. Monte Carlo molecular simulation is used to calculate the interaction parameters and mixing energy of crosslinker/water binary systems to analyze the compatibility between water and crosslinker molecules. Water-tree experiments verify that XLPE-TAIC represents the highest ability to inhibit the growth of water-trees, while XLPE-HAV2 shows the lowest resistance to water-trees. The stress-strain and viscoelastic properties show that the concentration of molecular chains connecting the adjacent lamellae in amorphous phase of XLPE-HAV2 is significantly higher than that of XLPE-TAIC and XLPE-TMPTMA. The molecular simulation results demonstrate that TAIC/water and TMPTMA/water binary systems possess a higher hydrophilicity than that of HAV2/water, as manifested by their lower interaction parameters and mixing free energies. The auxiliary crosslinkers can not only increase the molecular density of amorphous polyethylene between lamellae to inhibit water-tree growth, but also prevent water molecules at insulation defects from agglomerating into micro-water beads by increasing the hydrophilicity of auxiliary crosslinkers, which will evidently reduce the damage of micro-water beads on the amorphous phase in UV-XLPE. The better compatibility of TAIC and water molecules is the dominant reason accounting for the excellent water resistance of XLPE-TAIC.


Assuntos
Reagentes de Ligações Cruzadas/química , Polietileno/química , Árvores , Raios Ultravioleta , Água , Algoritmos , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Estrutura Molecular , Método de Monte Carlo
17.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650504

RESUMO

In order to improve the mechanical and dielectric properties of radome cyanate, a synergistic reinforcement method is employed to develop a resin-based ternary-composite with high heat-resistance and preferable radar-band transmission, which is expected to be applied to fabricate radomes capable of resisting high temperature and strong electric field. According to copolymerization characteristics and self-curing mechanism, epoxy resin (EP) and bismaleimide (BMI) are employed as reinforcements mixed into a cyanate ester (CE) matrix to prepare CE/BMI/EP composites of a heat-resistant radome material by high-temperature viscous-flow blending methods under the catalysis of aluminum acetylpyruvate. The crystallization temperature, transition heat, and reaction rate of cured polymers were tested to analyze heat-resistance characteristics and evaluate material synthesis processes. Scanning electron microscopy was used to characterize the micro-morphology of tensile fracture, which was combined with the tensile strength test and dynamic thermomechanical analysis to investigate the composite modifications on tenacity and rigidity. Weibull statistics were performed to analyze the experimental results of the dielectric breakdown field, and the dielectric-polarization and wave-transmission performances were investigated according to alternative current dielectric spectra. Compared with the pure CE and the CE composites individually reinforced by EP or BMI, the CE/BMI/EP composite acquires the most significant amelioration in both the mechanical and electrical insulation performances as indicated by the breaking elongation and dielectric breakdown strength being simultaneously improved by 40%, which are consistently manifested by the obviously increased transverse lines uniformly distributed on the fracture cross-section. Furthermore, the glass-transition temperature of CE/BMI/EP composite reaches the highest values of nearly 300 °C, with the relative dielectric constant and dielectric loss being mostly reduced to less than 3.2 and 0.01, respectively. The experimental results demonstrate that the CE/BMI/EP composite is a highly-qualified wave-transmission material with preferences in mechanical, thermostability, and electrical insulation performances, suggesting its prospective applications in low-frequency transmittance radomes.


Assuntos
Cianatos/química , Resinas Epóxi/química , Teste de Materiais , Temperatura Alta , Propriedades de Superfície
18.
Biochem Biophys Res Commun ; 508(4): 1038-1042, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30551879

RESUMO

Vascular remodeling is mainly caused by excessive proliferation of vascular smooth muscle cells (VSMCs). Noncoding RNAs (ncRNAs) have emerged as important regulators in diverse pathological processes. Previous work has shown the functions and mechanisms of long noncoding RNA H19 (LncRNA H19) on VSMCs. As long noncoding RNAs (lncRNAs) are complex in their mechanisms of action, the aim of the study is to identify if there are any other molecular mechanisms of LncRNA H19 on VSMCs. In vivo studies demonstrated that cyclin D1 was overexpressed in neointima of balloon-injured artery. In vitro studies identified that the overexpression of LncRNA H19 promoted VSMCs proliferation and cyclin D1 upregulation. On the contrary, cellular proliferation and expression of cyclin D1 were inhibited in VSMCs after infection with let-7a. Furthermore, luciferase reporter assays and RNA pull-down assays were used to explore the regulatory mechanism, we found that LncRNA H19 functioned as a competing endogenous RNA (ceRNA) by sponging let-7a to promote the expression of the target gene cyclin D1. In conclusion, LncRNA H19 positively regulated cyclin D1 expression through directly binding to let-7a in VSMCs. Our findings provide new insight into the mechanism of LncRNA H19 in VSMCs proliferation and vascular remodeling, and further indicate the implications of LncRNA H19 in the diagnosis and treatment of vascular proliferative diseases.


Assuntos
Ciclina D1/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima/genética , Remodelação Vascular/genética , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/genética , Estenose Coronária/genética , Ciclina D1/metabolismo , Humanos , Masculino , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , Ratos Sprague-Dawley
19.
Sensors (Basel) ; 19(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817944

RESUMO

Finite element simulations for detecting the dielectric permittivity of planar nanoscale dielectrics by electrostatic probe are performed to explore the microprobe technology of characterizing nanomaterials. The electrostatic force produced by the polarization of nanoscale dielectrics is analyzed by a capacitance gradient between the probe and nano-sample in an electrostatic detection system, in which sample thickness is varied in the range of 1 nm-10 µm, the width (diameter) encompasses from 100 nm to 10 µm, the tilt angle of probe alters between 0° and 20°, and the relative dielectric constant covers 2-1000 to represent a majority of dielectric materials. For dielectric thin films with infinite lateral dimension, the critical diameter is determined, not only by the geometric shape and tilt angle of detecting probe, but also by the thickness of the tested nanofilm. Meanwhile, for the thickness greater than 100 nm, the critical diameter is almost independent on the probe geometry while being primarily dominated by the thickness and dielectric permittivity of nanomaterials, which approximately complies a variation as exponential functions. For nanofilms with a plane size which can be regarded as infinite, a pertaining analytical formalism is established and verified for the film thickness in an ultrathin limit of 10-100 nm, with the probe axis being perpendicular and tilt to film plane, respectively. The present research suggests a general testing scheme for characterizing flat, nanoscale, dielectric materials on metal substrates by means of electrostatic microscopy, which can realize an accurate quantitative analysis of dielectric permittivity.

20.
Sensors (Basel) ; 19(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035666

RESUMO

Sensors in the Internet of Things (IoT) generate large amounts of data, which requires high-speed data transmission. In order to achieve the parallel transmissions of the wireless sensor network on the transmission layer, the performance of stream control transmission protocol (SCTP) and transmission control protocol (TCP) in the wireless sensor network under different packet error rates was simulated and compared. A dynamic multipath handover method for SCTP (MS-SCTP) was proposed to improve the transmission performance, which selects the transmission path according to the packet error rate and the retransmission ratio in the sender's buffer. The TCP and SCTP protocol switching method (TCP-SCTP) was proposed to detect the current network traffic and adjust the MS-SCTP or TCP method. Analysis and simulation results show that MS-SCTP and TCP-SCTP could improve network throughput and reduce packet loss rate. MS-SCTP and TCP-SCTP can be combined with other technologies and channel allocation algorithms to improve network traffic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA