Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Cell ; 34(11): 4554-4568, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35972347

RESUMO

Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Regulação da Expressão Gênica de Plantas , Gossypium , Organogênese Vegetal , Proteínas de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo dos Lipídeos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Elementos Facilitadores Genéticos , Multimerização Proteica , Reprogramação Celular/genética , Organogênese Vegetal/genética
2.
Nature ; 576(7785): 163-167, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776515

RESUMO

Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca2+-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity1-3. Dysfunction of CALHMs has previously been linked to neurological disorders1. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca2+-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1-S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels4-8. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.


Assuntos
Ativação do Canal Iônico , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
Nature ; 562(7725): 145-149, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250252

RESUMO

Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that has an essential role in diverse physiological processes such as core body temperature regulation, immune response and apoptosis1-4. TRPM2 is polymodal and can be activated by a wide range of stimuli1-7, including temperature, oxidative stress and NAD+-related metabolites such as ADP-ribose (ADPR). Its activation results in both Ca2+ entry across the plasma membrane and Ca2+ release from lysosomes8, and has been linked to diseases such as ischaemia-reperfusion injury, bipolar disorder and Alzheimer's disease9-11. Here we report the cryo-electron microscopy structures of the zebrafish TRPM2 in the apo resting (closed) state and in the ADPR/Ca2+-bound active (open) state, in which the characteristic NUDT9-H domains hang underneath the MHR1/2 domain. We identify an ADPR-binding site located in the bi-lobed structure of the MHR1/2 domain. Our results provide an insight into the mechanism of activation of the TRPM channel family and define a framework for the development of therapeutic agents to treat neurodegenerative diseases and temperature-related pathological conditions.


Assuntos
Adenosina Difosfato Ribose/farmacologia , Cálcio/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/ultraestrutura , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/ultraestrutura , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Microscopia Crioeletrônica , Ácido Edético/química , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Modelos Moleculares , Doenças Neurodegenerativas/tratamento farmacológico , Domínios Proteicos , Pirofosfatases/química , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química
4.
Plant Biotechnol J ; 21(6): 1270-1285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949572

RESUMO

N6 -methyladenosine (m6 A) is the most prevalent internal modification present in mRNAs, and is considered to participate in a range of developmental and biological processes. Drought response is highly regulated at the genomic, transcriptional and post-transcriptional levels. However, the biological function and regulatory mechanism of m6 A modification in the drought stress response is still poorly understood. We generated a transcriptome-wide m6 A map using drought-resistant and drought-sensitive varieties of cotton under different water deficient conditions to uncover patterns of m6 A methylation in cotton response to drought stress. The results reveal that m6 A represents a common modification and exhibit dramatic changes in distribution during drought stress. More 5'UTR m6 A was deposited in the drought-resistant variety and was associated with a positive effect on drought resistance by regulating mRNA abundance. Interestingly, we observed that increased m6 A abundance was associated with increased mRNA abundance under drought, contributing to drought resistance, and vice versa. The demethylase GhALKBH10B was found to decrease m6 A levels, facilitating the mRNA decay of ABA signal-related genes (GhZEP, GhNCED4 and GhPP2CA) and Ca2+ signal-related genes (GhECA1, GhCNGC4, GhANN1 and GhCML13), and mutation of GhALKBH10B enhanced drought resistance at seedling stage in cotton. Virus-induced gene silencing (VIGS) of two Ca2+ -related genes, GhECA1 and GhCNGC4, reduced drought resistance with the decreased m6 A enrichment on silenced genes in cotton. Collectively, we reveal a novel mechanism of post-transcriptional modification involved in affecting drought response in cotton, by mediating m6 A methylation on targeted transcripts in the ABA and Ca2+ signalling transduction pathways.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , RNA Mensageiro/genética , Gossypium/genética , Gossypium/metabolismo
5.
Nature ; 552(7684): 200-204, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211723

RESUMO

Ca2+-activated, non-selective (CAN) ion channels sense increases of the intracellular Ca2+ concentration, producing a flux of Na+ and/or K+ ions that depolarizes the cell, thus modulating cellular Ca2+ entry. CAN channels are involved in cellular responses such as neuronal bursting activity and cardiac rhythm. Here we report the electron cryo-microscopy structure of the most widespread CAN channel, human TRPM4, bound to the agonist Ca2+ and the modulator decavanadate. Four cytosolic C-terminal domains form an umbrella-like structure with a coiled-coil domain for the 'pole' and four helical 'ribs' spanning the N-terminal TRPM homology regions (MHRs), thus holding four subunits in a crown-like architecture. We observed two decavanadate-binding sites, one in the C-terminal domain and another in the intersubunit MHR interface. A glutamine in the selectivity filter may be an important determinant of monovalent selectivity. Our structure provides new insights into the function and pharmacology of both the CAN and the TRPM families.


Assuntos
Microscopia Crioeletrônica , Canais de Cátion TRPM/ultraestrutura , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Humanos , Modelos Moleculares , Domínios Proteicos , Canais de Cátion TRPM/química , Vanadatos/química , Vanadatos/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R484-R495, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993561

RESUMO

Stress plays a major role in the pathogenesis of many diseases. Central neuropeptide Y (NPY) counteracts the biological actions of corticotropin-releasing factor (CRF) and attenuates stress responses. Intracerebroventricular (ICV) administration of NPY significantly antagonized the inhibitory effects of chronic complicated stress (CCS) on gastrointestinal (GI) dysmotility in rats. However, ICV administration is an invasive technique. The effect of intranasal administration of NPY on the hypothalamus-pituitary-adrenal (HPA) axis and GI motility in CCS conditions have not been studied, and the inhibitory mechanism of NPY on CRF through the γ-aminobutyric acid (GABA)A receptor needs to be further investigated. A CCS rat model was set up, and NPY was intranasally administered every day before the stress loading. Furthermore, ICV administration of a GABAA receptor antagonist was performed daily. Hypothalamic CRF and NPY expressions were evaluated, serum corticosterone and NPY levels were analyzed, and colonic motor functions were assessed. CCS rats showed significantly increased CRF expression and corticosterone levels, which resulted in enhanced colonic motor functions. Intranasal NPY significantly increased hypothalamic NPY mRNA expression and reduced CRF mRNA expression and plasma corticosterone levels, helping to restore colonic motor functions. However, ICV administration of the GABAA receptor antagonist significantly abolished these effects induced by NPY. In conclusion, intranasal administration of NPY upregulates the hypothalamic NPY system. NPY may, through the GABAA receptor, significantly antagonize overexpressed central CRF and attenuate HPA axis activity in CCS conditions, influencing and helping to restore colonic motor function.


Assuntos
Hormônio Liberador da Corticotropina , Neuropeptídeo Y , Administração Intranasal , Animais , Proteínas de Transporte/metabolismo , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário , Masculino , Neuropeptídeo Y/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Ácido gama-Aminobutírico
7.
Theor Appl Genet ; 135(10): 3375-3391, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35999283

RESUMO

In order to understand the molecular mechanism of cotton's response to drought during the flowering and boll stage, transcriptomics and metabolomics were carried out for two introgression lines (drought-tolerant line: T307; drought-sensitive line: S48) which were screened from Gossypium hirsutum cv. 'Emian22' with some gene fragments imported from Gossypium barbadense acc. 3-79, under drought stress by withdrawing water at flowering and boll stage. Results showed that the basic drought response in cotton included a series of broad-spectrum responses, such as amino acid synthesis, hormone (abscisic acid, ABA) signal transduction, and mitogen-activated protein kinases signal transduction pathway, which activated in both drought-tolerant and drought-sensitive lines. However, the difference of their imported fragments and diminished sequences triggers endoplasmic reticulum (ER) protein processing, photosynthetic-related pathways (in leaves), and membrane solute transport (in roots) in drought-tolerant line T307, while these are missed or not activated in drought-sensitive line S48, reflecting the different drought tolerance of the two genotypes. Virus-induced gene silencing assay of drought-tolerant differentially expressed heat shock protein (HSP) genes (mainly in leaf) and ATP-binding cassette (ABC) transporter genes (mainly in roots) indicated that those genes play important role in cotton drought tolerant. Combined analysis of transcriptomics and metabolomics highlighted the important roles of ER-stress-related HSP genes and root-specific ABC transporter genes in plants drought tolerance. These results provide new insights into the molecular mechanisms underlying the drought stress adaptation in cotton.


Assuntos
Secas , Gossypium , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico , Trifosfato de Adenosina , Aminoácidos , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Choque Térmico/genética , Hormônios , Metaboloma , Proteínas Quinases Ativadas por Mitógeno/genética , Estresse Fisiológico/genética , Transcriptoma , Água
8.
Plant Physiol ; 183(1): 236-249, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139477

RESUMO

Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK)-mediated calcium signaling has been widely reported to function in plant development and various stress responses, particularly in ion homeostasis. Sugars are the most important primary metabolites, and thus sugar homeostasis requires precise regulation. Here, we describe a CBL2-CIPK6-Tonoplast-Localized Sugar Transporter2 (TST2) molecular module in cotton (Gossypium hirsutum) that regulates plant sugar homeostasis, in particular Glc homeostasis. GhCIPK6 is recruited to the tonoplast by GhCBL2 and interacts with the tonoplast-localized sugar transporter GhTST2. Overexpression of either GhCBL2, GhCIPK6, or GhTST2 was sufficient to promote sugar accumulation in transgenic cotton, whereas RNAi-mediated knockdown of GhCIPK6 expression or CRISPR-Cas9-mediated knockout of GhTST2 resulted in significantly decreased Glc content. Moreover, mutation of GhCBL2 or GhTST2 in GhCIPK6-overexpressing cotton reinstated sugar contents comparable to wild-type plants. Heterologous expression of GhCIPK6 in Arabidopsis (Arabidopsis thaliana) also promoted Glc accumulation, whereas mutation of AtTST1/2 in GhCIPK6-overexpressing Arabidopsis similarly reinstated wild-type sugar contents, thus indicating conservation of CBL2-CIPK6-TST2-mediated sugar homeostasis among different plant species. Our characterization of the molecular players behind plant sugar homeostasis may be exploited to improve sugar contents and abiotic stress resistance in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteínas Quinases/genética
9.
Physiol Mol Biol Plants ; 27(2): 359-368, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33707874

RESUMO

Calcineurin B-like proteins (CBLs) interact with CBL-interacting protein kinases (CIPKs) to form complex molecular modules in response to diverse abiotic stresses. Although previous studies demonstrated that the CBL-CIPK networks play a crucial role in plants response to abiotic stresses, however, little is known about their functions in cotton. In the present study, a total of 22 GhCBL and 79 GhCIPK gene family members were identified in upland cotton (Gossypium hirsutum Linn). Synteny analysis revealed that most genes of GhCBL and GhCIPK exist in pairs between At sub-genome and Dt sub-genome. Interaction analysis between GhCBL and GhCIPK proteins by yeast two-hybrid (Y2H) suggested that the GhCBL-GhCIPK networks were complex, and exhibited functional redundancy in cotton. Quantitative expression analysis by public transcriptome datasets revealed that some GhCBL and GhCIPK genes are differentially expressed under abiotic stress treatments, and especially under drought stress. Our results not only contribute to understanding the structural features of GhCBL and GhCIPK genes but also provide the basis for in-depth functional studies of GhCBL-GhCIPK networks in stress response for plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (doi:10.1007/s12298-021-00943-1).

10.
Glia ; 68(12): 2631-2642, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32585762

RESUMO

Cortical spreading depression (CSD) is a pathological neural excitation that underlies migraine pathophysiology. Since glutamate receptor antagonists impair CSD propagation, susceptibility to CSD might be determined by any of the neuronal (excitatory amino acid carrier 1 [EAAC1]) and glial (GLutamate ASpartate Transporter [GLAST] and glial glutamate transporter 1 [GLT-1]) glutamate transporters, which are responsible for clearing extracellular glutamate. To investigate this hypothesis, we performed electrophysiological, hemodynamic, and electrochemical analyses using EAAC1- (EAAC1 KO), GLAST- (GLAST KO), and conditional GLT1-1-knockout mice (GLT-1 cKO) to assess altered susceptibility to CSD. Despite the incomplete deletion of the gene in the cerebral cortex, GLT-1 cKO mice exhibited significant reduction of GLT-1 protein in the brain without apparent alteration of the cytoarchitecture in the cerebral cortex. Physiological analysis revealed that GLT-1 cKO showed enhanced susceptibility to CSD elicited by chemical stimulation with increased CSD frequency and velocity compared to GLT-1 control. In contrast, the germ-line EAAC1 and GLAST KOs showed no such effect. Intriguingly, both field potential and cerebral blood flow showed faster dynamics with narrower CSD than the controls. An enzyme-based biosensor revealed more rapid accumulation of glutamate in the extracellular space in GLT-1 cKO mice during the early phase of CSD than in GLT-1 control, resulting in an increased susceptibility to CSD. These results provided the first evidence for a novel role of GLT-1 in determining susceptibility to CSD.


Assuntos
Depressão , Animais , Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório , Ácido Glutâmico , Camundongos
11.
Plant Mol Biol ; 103(1-2): 211-223, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172495

RESUMO

The mitogen-activated protein kinase (MAPK) cascade pathway, which has three components, MAP3Ks, MKKs and MPKs, is involved in diverse biological processes in plants. In the current study, MAPK cascade genes were identified in three cotton species, based on gene homology with Arabidopsis. Selection pressure analysis of MAPK cascade genes revealed that purifying selection occurred among the cotton species. Expression pattern analysis showed that some MAPK cascade genes differentially expressed under abiotic stresses and phytohormones treatments, and especially under drought stress. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments showed extensive interactions between different MAPK cascade proteins. Virus-induced gene silencing (VIGS) assays showed that some MAPK cascade modules play important roles in the drought stress response, and the GhMAP3K14-GhMKK11-GhMPK31 signal pathway was demonstrated to regulate drought stress tolerance in cotton. This study provides new information on the function of MAPK cascade genes in the drought response, and will help direct molecular breeding for improved drought stress tolerance in cotton.


Assuntos
Gossypium/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aclimatação/genética , Secas , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Gossypium/enzimologia , Gossypium/fisiologia , Filogenia
12.
Plant Biotechnol J ; 18(12): 2533-2544, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32558152

RESUMO

Drought resistance (DR) is a complex trait that is regulated by a variety of genes. Without comprehensive profiling of DR-related traits, the knowledge of the genetic architecture for DR in cotton remains limited. Thus, there is a need to bridge the gap between genomics and phenomics. In this study, an automatic phenotyping platform (APP) was systematically applied to examine 119 image-based digital traits (i-traits) during drought stress at the seedling stage, across a natural population of 200 representative upland cotton accessions. Some novel i-traits, as well as some traditional i-traits, were used to evaluate the DR in cotton. The phenomics data allowed us to identify 390 genetic loci by genome-wide association study (GWAS) using 56 morphological and 63 texture i-traits. DR-related genes, including GhRD2, GhNAC4, GhHAT22 and GhDREB2, were identified as candidate genes by some digital traits. Further analysis of candidate genes showed that Gh_A04G0377 and Gh_A04G0378 functioned as negative regulators for cotton drought response. Based on the combined digital phenotyping, GWAS analysis and transcriptome data, we conclude that the phenomics dataset provides an excellent resource to characterize key genetic loci with an unprecedented resolution which can inform future genome-based breeding for improved DR in cotton.


Assuntos
Secas , Estudo de Associação Genômica Ampla , Gossypium/genética , Fenômica , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
Mol Cell Biochem ; 463(1-2): 175-187, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31712941

RESUMO

Calycosin-7-O-ß-D-glucoside (CG) is the component of Astragali Radix, and the aim of the present study is to investigate whether CG protects myocardium from I/R-induced damage by the regulation of IL-10/JAK2/STAT3 signaling pathway. H9C2 cells were subjected to I/R treatment and pretreated with 1 µm CG in vitro. In addition, a mouse model of myocardial I/R injury was induced by left anterior descending (LAD) coronary artery ligation and administrated with 30 mg/kg CG by intravenous injection before I/R surgery. In vitro and in vivo results showed that CG up-regulated IL-10 level, activated the JAK2/STAT3 pathway, and protected myocardial cells from I/R-induced apoptosis. The hemodynamic measurement, TTC staining, TUNEL staining, and western blot results in vivo showed that the protective effects of CG on myocardial function and cell apoptosis were all reversed by the IL-10R α neutralizing antibody. CG-induced phosphorylation activation of JAK2/STAT3 signaling pathway was also suppressed by the blocking of IL-10. In summary, these findings suggest that CG might alleviate myocardial I/R injury by activating the JAK2/STAT3 signaling pathway via up-regulation of IL-10 secretion, which provides us insights into the mechanism underlying the protective effect of CG on myocardial I/R injury.


Assuntos
Glucosídeos/farmacologia , Interleucina-10/metabolismo , Isoflavonas/farmacologia , Janus Quinase 2/metabolismo , Traumatismo por Reperfusão Miocárdica , Miocárdio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos
14.
J Exp Bot ; 70(5): 1525-1538, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30715415

RESUMO

Abscission is a process that allows plants to shed tissues or organs via cell separation, and occurs throughout the life cycle. Removal of leaves through the use of chemical defoliants is very important for mechanical harvesting of cotton (Gossypium hirsutum). However, our knowledge of the molecular mechanisms of the defoliation response involved is limited. In this study, RNA-seq was conducted in order to profile the differentially expressed genes (DEGs) between cultivars X50 (sensitive to chemical defoliants) and X33 (relatively insensitive) at different time points after treatment with thidiazuron and ethephon (TE). A total of 2434 DEGs were identified between the two cultivars across the different time-points. Functional categories according to GO and KEGG analyses revealed that plant hormone signal transduction and zeatin biosynthesis were involved in the response to TE. Cytokinin oxidase/dehydrogenase (CKX) genes and ethylene-related genes were up-regulated following TE treatment, and were associated with increased level of ethylene, especially in cultivar X50. Down-regulation of GhCKX3 resulted in delayed defoliation and a reduced ethylene response. The results show that crosstalk between cytokinin and ethylene regulates cotton defoliation, and provide new insights into the molecular mechanisms underlying the mode of action of defoliants in cotton.


Assuntos
Citocininas/metabolismo , Desfolhantes Químicos/administração & dosagem , Etilenos/metabolismo , Gossypium/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Gossypium/efeitos dos fármacos , Gossypium/genética , Compostos Organofosforados/administração & dosagem , Compostos de Fenilureia/administração & dosagem , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tiadiazóis/administração & dosagem
15.
J Invertebr Pathol ; 153: 51-56, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29453965

RESUMO

Determination of intraguild interactions between entomopathogens and predators is important when attempting to use a combination of these two natural enemy groups for biological control of their shared arthropod pest species. This study assessed the effects of Beauveria bassiana on the predation and associated behavior of the predatory mite, Phytoseiulus persimilis, against Tetranychus urticae. The functional response tests showed that P. persimilis exhibited a Holling type II response on the spider mite, Tetranychus urticae, when treated with either a B. bassiana or Tween-80 suspension. There were no significant differences between the treatments in the number of T. urticae consumed. The laboratory choice test indicated that P. persimilis displayed a significant avoidance response to B. bassiana on bean leaves immediately following spray application. They also spent significantly longer time in self-grooming behavior on leaf disks sprayed with fungal conidia than on discs treated with Tween-80. There were no significant differences in the predation rates on T. urticae eggs between the different treatments. The potted plant investigations indicated that P. persimilis showed significant aversion behavior to the initial fungal spray, but gradually dispersed over the entire bean plants. Observations using scanning electron microscopy revealed that fungal conidia were attached to the body of P. persimilis after mounting the leaf disk treated with B. bassiana, which would account for its varied behavioral responses. Our study suggests that fungal spray did not affect the predation capability of P. persimilis and poses a negligible risk to their behavior.


Assuntos
Beauveria , Ácaros/fisiologia , Ácaros/parasitologia , Controle Biológico de Vetores/métodos , Tetranychidae/parasitologia , Animais , Comportamento Predatório
16.
Gene ; 893: 147899, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839764

RESUMO

Edible oils with high unsaturated fatty acids, particularly oleic acid, are beneficial to human health. Cotton is one of the top five oil crops in the world, but the mechanism of high-quality oil synthesis and regulatory networks in cotton are largely unclear. Here, we identified Leafy cotyledon1-like 1 (GhL1L1), a NF-YB subfamily gene that is specifically expressed during somatic embryogenesis and seed maturation in cotton. Overexpression of GhL1L1 regulates the contents of unsaturated fatty acids in cotton, especially in the seeds, which is associated with altered expression of the cotton fatty acid biosynthesis-related genes. GhL1L1 synergistically enhanced the expression of GhFAD2-1A by binding to the G-box in its promoter, leading to an increase in the content of linoleic acid. Furthermore, this activation could be enhanced by GhNF-YC2 and GhNF-YA1 by form a transcriptional complex. Collectively, these results contribute to provide new insights into the molecular mechanism of oil biosynthesis in cotton and can facilitate genetic manipulation of cotton varieties with enhanced oil content.


Assuntos
Ácidos Graxos Insaturados , Proteínas de Plantas , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Ácido Oleico/metabolismo , Ácido Linoleico , Sementes/genética , Sementes/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Óleos de Plantas , Regulação da Expressão Gênica de Plantas
17.
Nat Neurosci ; 26(8): 1438-1448, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474639

RESUMO

Memorization and generalization are complementary cognitive processes that jointly promote adaptive behavior. For example, animals should memorize safe routes to specific water sources and generalize from these memories to discover environmental features that predict new ones. These functions depend on systems consolidation mechanisms that construct neocortical memory traces from hippocampal precursors, but why systems consolidation only applies to a subset of hippocampal memories is unclear. Here we introduce a new neural network formalization of systems consolidation that reveals an overlooked tension-unregulated neocortical memory transfer can cause overfitting and harm generalization in an unpredictable world. We resolve this tension by postulating that memories only consolidate when it aids generalization. This framework accounts for partial hippocampal-cortical memory transfer and provides a normative principle for reconceptualizing numerous observations in the field. Generalization-optimized systems consolidation thus provides new insight into how adaptive behavior benefits from complementary learning systems specialized for memorization and generalization.


Assuntos
Aprendizagem , Consolidação da Memória , Animais , Generalização Psicológica , Hipocampo
18.
Plant Physiol Biochem ; 203: 108072, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37827043

RESUMO

Cotton is a crucial economic crop, serving as a natural fiber source for the textile industry. However, drought stress poses a significant threat to cotton fiber quality and productivity worldwide. Pyrabactin Resistance 1-Like (PYL) proteins, as abscisic acid (ABA) receptors, play a crucial role in adverse stress responses, but knowledge about the PYLs in cotton remains limited. In our study, we identified 40 GhPYL genes in Gossypium hirsutum through a genome-wide analysis of the cotton genome database. Our analysis revealed that the PYL family formed three distinct subfamilies with typical family characteristics in G. hirsutum. Additionally, through quantitative expression analysis, including transcriptome dataset and qRT-PCR, we found that all GhPYLs were expressed in all tissues of G. hirsutum, and all GhPYLs were differentially expressed under drought stress. Among them, GhPYL4A1, GhPY5D1, GhPY8D2, and a member of the type 2C protein phosphatases clade A family in Gossypium hirsutum (GhPP2CA), GhHAI2D, showed significant differences in expression levels within 12 h after stress treatment. Our protein interaction analysis and BiFC demonstrated the complex regulatory network between GhPYL family proteins and GhPP2CA proteins. We also found that there is an interaction between GhPYL8D2 and GhHAI2D, and through drought treatment of transgenic cotton, we found that GhPYL8D2 played a vital role in the response of G. hirsutum to drought through stomatal control via co-regulation with GhHAI2D. Our findings provide useful insights into the regulation of GhPYL family genes that occur in response to abiotic stresses in cotton.


Assuntos
Secas , Gossypium , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Transcriptoma/genética
19.
J Adv Res ; 51: 13-25, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36414168

RESUMO

INTRODUCTION: Drought is the principal abiotic stress that severely impacts cotton (Gossypium hirsutum) growth and productivity. Upon sensing drought, plants activate stress-related signal transduction pathways, including ABA signal and mitogen-activated protein kinase (MAPK) cascade. However, as the key components with the fewest members in the MAPK cascade, the function and regulation of GhMKKs need to be elucidated. In addition, the relationship between MAPK module and the ABA core signaling pathway remains incompletely understood. OBJECTIVE: Here we aim to elucidate the molecular mechanism of cotton response to drought, with a focus on mitogen-activated protein kinase (MAPK) cascades activating ABA signaling. METHODS: Biochemical, molecular and genetic analysis were used to study the GhMAP3K62-GhMKK16-GhMPK32-GhEDT1 pathway genes. RESULTS: A nucleus- and membrane-localized MAPK cascade pathway GhMAP3K62-GhMKK16-GhMPK32, which targets and phosphorylates the nuclear-localized transcription factor GhEDT1, to activate downstream GhNCED3 to mediate ABA-induced stomatal closure and drought response was characterized in cotton. Overexpression of GhMKK16 promotes ABA accumulation, and enhances drought tolerance via regulating stomatal closure under drought stress. Conversely, RNAi-mediated knockdown of GhMKK16 expression inhibits ABA accumulation, and reduces drought tolerance. Virus-induced gene silencing (VIGS)-mediated knockdown of either GhMAP3K62, GhMPK32 or GhEDT1 expression represses ABA accumulation and reduces drought tolerance through inhibiting stomatal closure. Expression knockdown of GhMPK32 or GhEDT1 in GhMKK16-overexpressing cotton reinstates ABA content and stomatal opening-dependent drought sensitivity to wild type levels. GhEDT1 could bind to the HD boxes in the promoter of GhNCED3 to activate its expression, resulting in ABA accumulation. We propose that the MAPK cascade GhMAP3K62-GhMKK16-GhMPK32 pathway functions on drought response through ABA-dependent stomatal movement in cotton.


Assuntos
Resistência à Seca , Gossypium , Gossypium/genética , Gossypium/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo
20.
Plant Physiol Biochem ; 162: 468-475, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33752135

RESUMO

Expansins are nonenzymatic cell wall proteins that play significant role in plant development as well as stress responses. Hereby, an expansin-like gene, GhEXLB2 was isolated from a cotton (Gossypium hirsutum L.) protoplast with suppression subtractive hybridization to characterize and study its responses against abiotic stresses. GhEXLB2 is the cell-wall localized protein. The expression of GhEXLB2 level was significantly high under polyethylene glycol and salt treatments. GhEXLB2 was further characterized in vitro by cloning and transformation into cotton. Cotton plants overexpressing GhEXLB2 showed enhanced drought tolerance at germination, seedling and flowering stages. After polyethylene glycol (PEG) treatment at germination stage, the length of main root and hypocotyl of overexpressing lines was significantly longer than YZ1 (wild type) and RNAi lines. In addition, H2O2 and malondialdehyde (MDA) contents were lower, while superoxide dismutase (SOD) and peroxidase (POD) activity was detected higher in overexpressing seedlings. On the other hand, higher SOD and POD activity was detected in overexpressing lines than WT plants in soil. In addition, water use efficiency (WUE), soluble sugar, and chlorophyll contents were also significantly greater in overexpressing plants. The present study revealed that GhEXLB2 play crucial role in enhancing drought resistivity in cotton.


Assuntos
Secas , Gossypium , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Peróxido de Hidrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA