Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nat Chem Biol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858530

RESUMO

The copy number of genes in chromosomes can be modified by chromosomal integration to construct efficient microbial cell factories but the resulting genetic systems are prone to failure or instability from triggering homologous recombination in repetitive DNA sequences. Finding the optimal copy number of each gene in a pathway is also time and labor intensive. To overcome these challenges, we applied a multiple nonrepetitive coding sequence calculator that generates sets of coding DNA sequence (CDS) variants. A machine learning method was developed to calculate the optimal copy number combination of genes in a pathway. We obtained an engineered Yarrowia lipolytica strain for eicosapentaenoic acid biosynthesis in 6 months, producing the highest titer of 27.5 g l-1 in a 50-liter bioreactor. Moreover, the lycopene production in Escherichia coli was also greatly improved. Importantly, all engineered strains of Y. lipolytica, E. coli and Saccharomyces cerevisiae constructed with nonrepetitive CDSs maintained genetic stability.

2.
Metab Eng ; 82: 250-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428728

RESUMO

Gastrodin, a phenolic glycoside, is a prominent component of Gastrodia elata, which is renowned for its sedative, hypnotic, anticonvulsant, and neuroprotective activities. Engineering heterologous production of plant natural products in microbial host represents a safe, cost-effective, and scalable alternative to plant extraction. Here, we present the construction of an engineered Yarrowia lipolytica yeast that achieves a high-titer production of gastrodin. We systematically refactored the yeast genome by enhancing the flux of the shikimate pathway and optimizing the glucosyl transfer system. We introduced more than five dozen of genetic modifications onto the yeast genome, including enzyme screening, alleviation of rate-limiting steps, promoter selection, genomic integration site optimization, downregulation of competing pathways, and elimination of gastrodin degradation. Meanwhile, we developed a Copper-induced Antisense-Transcriptional Regulation (CATR) tool. The developed CATR toolkit achieved dynamic repression and activation of violacein synthesis through the addition of copper in Y. lipolytica. This strategy was further used to dynamically regulate the pyruvate kinase node to effectively redirect glycolytic flux towards the shikimate pathway while maintaining cell growth at proper rate. Taken together, these efforts resulted in 9477.1 mg/L of gastrodin in shaking flaks and 13.4 g/L of gastrodin with a yield of 0.149 g/g glucose in a 5-L bioreactor, highlighting the potential for large-scale and sustainable production of gastrodin from microbial fermentation.


Assuntos
Cobre , Yarrowia , Ácido Chiquímico , Glucosídeos , Álcoois Benzílicos , Yarrowia/genética
3.
Virol J ; 20(1): 135, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349792

RESUMO

OBJECTIVE: To isolate a prevalent G9P[8] group A rotavirus (RVA) (N4006) in China and investigate its genomic and evolutionary characteristics, with the goal of facilitating the development of a new rotavirus vaccine. METHODS: The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2. RESULTS: The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes. CONCLUSION: The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Infecções por Rotavirus/epidemiologia , Filogenia , Genoma Viral , Genômica , Genótipo
4.
Biotechnol Bioeng ; 120(4): 1026-1037, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522292

RESUMO

The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.


Assuntos
Engenharia Metabólica , Esqualeno , Fermentação , Acetilcoenzima A/metabolismo
5.
J Invertebr Pathol ; 197: 107900, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806462

RESUMO

Enterocytozoon hepatopenaei (EHP), an obligate intracellular parasite classified as microsporidia, is an emerging pathogen with a significant impact on the global shrimp aquaculture industry. The understanding of how microsporidia germinate has been a key factor in exploring its infection process. However, the germination process of EHP was rarely reported. To gain insight into the germination process, we conducted a high-throughput sequencing analysis of purified EHP spores that had undergone in vitro germination treatment. This analysis revealed 137 differentially expressed genes, with 84 up-regulated and 53 down-regulated genes. While the functions of some of the genes remain unknown, this study provides important data on the transcriptomic changes before and after EHP germination, which can aid in further studies on the EHP infection mechanism.


Assuntos
Enterocytozoon , Penaeidae , Animais , Transcriptoma , Penaeidae/parasitologia , Perfilação da Expressão Gênica , Enterocytozoon/genética , Esporos
6.
Crit Rev Biotechnol ; 42(6): 838-855, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34779326

RESUMO

Eicosapentaenoic Acid (EPA) is an essential ω-3 polyunsaturated fatty acid for human health. Currently, high-quality EPA production is largely dependent on the extraction of fish oil, but this unsustainable approach cannot meet its rising market demand. Biotechnological approaches for EPA production from microorganisms have received increasing attention due to their suitability for large-scale production and independence of the seasonal or climate restrictions. This review summarizes recent research on different microorganisms capable of producing EPA, such as microalgae, bacteria, and fungi, and introduces the different EPA biosynthesis pathways. Notably, some novel engineering strategies have been applied to endow and improve the abilities of microorganisms to synthesize EPA, including the construction and optimization of the EPA biosynthesis pathway, an increase in the acetyl-CoA pool supply, the increase of NADPH and the inhibition of competing pathways. This review aims to provide an updated summary of EPA production.


Assuntos
Ácidos Graxos Ômega-3 , Microalgas , Vias Biossintéticas , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Engenharia Metabólica , Microalgas/metabolismo
7.
Crit Rev Food Sci Nutr ; 62(32): 8920-8934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34120537

RESUMO

Owing to the important physiological functions, polyunsaturated fatty acids (PUFAs) play a vital role in protecting human health, such as preventing cancer, cardiovascular disease, and diabetes. Specifically, Yarrowia lipolytica has been identified as the most popular non-conventional oleaginous yeast, which can accumulate the abundant intracellular lipids, indicating that has great potential as an industrial host for production of PUFAs. Notably, some novel engineering strategies have been applied to endow and improve the abilities of Y. lipolytica to synthesize PUFAs, including construction and optimization of PUFAs biosynthetic pathways, improvement of preucrsors acetyl-coA and NADPH supply, inhibition of competing pathways, knockout of ß-oxidation pathways, regulation of oxidative stress defense pathways, and regulation of genes involved in upstream lipid metabolism. Besides, some bypass approaches, such as strain mating, evolutionary engineering, and computational model based on omics, also have been proposed to improve the performance of engineering strains. Generally, in this review, we summarized the recent advances in engineering strategies and bypass approaches for improving PUFAs production by Y. lipolytica. In addition, we further summarized the latest efforts of CRISPR/Cas genome editing technology in Y. lipolytica, which is aimed to provide its potential applications in PUFAs production.


Assuntos
Yarrowia , Humanos , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica , Biotecnologia , Ácidos Graxos Insaturados/metabolismo , Edição de Genes , Ácidos Graxos/metabolismo
8.
Microb Cell Fact ; 21(1): 191, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109777

RESUMO

Escherichia coli, one of the most efficient expression hosts for recombinant proteins (RPs), is widely used in chemical, medical, food and other industries. However, conventional expression strains are unable to effectively express proteins with complex structures or toxicity. The key to solving this problem is to alleviate the host burden associated with protein overproduction and to enhance the ability to accurately fold and modify RPs at high expression levels. Here, we summarize the recently developed optimization strategies for the high-level production of RPs from the two aspects of host burden and protein activity. The aim is to maximize the ability of researchers to quickly select an appropriate optimization strategy for improving the production of RPs.


Assuntos
Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes
9.
J Appl Microbiol ; 133(2): 273-286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35294082

RESUMO

Mandelic acid and its derivatives are an important class of chemical synthetic blocks, which is widely used in drug synthesis and stereochemistry research. In nature, mandelic acid degradation pathway has been widely identified and analysed as a representative pathway of aromatic compounds degradation. The most studied mandelic acid degradation pathway from Pseudomonas putida consists of mandelate racemase, S-mandelate dehydrogenase, benzoylformate decarboxylase, benzaldehyde dehydrogenase and downstream benzoic acid degradation pathways. Because of the ability to catalyse various reactions of aromatic substrates, pathway enzymes have been widely used in biocatalysis, kinetic resolution, chiral compounds synthesis or construction of new metabolic pathways. In this paper, the physiological significance and the existing range of the mandelic acid degradation pathway were introduced first. Then each of the enzymes in the pathway is reviewed one by one, including the researches on enzymatic properties and the applications in biotechnology as well as efforts that have been made to modify the substrate specificity or improving catalytic activity by enzyme engineering to adapt different applications. The composition of the important metabolic pathway of bacterial mandelic acid degradation pathway as well as the researches and applications of pathway enzymes is summarized in this review for the first time.


Assuntos
Ácidos Mandélicos , Pseudomonas putida , Biotecnologia , Cinética , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Oxirredutases/metabolismo
10.
Appl Microbiol Biotechnol ; 106(13-16): 4907-4920, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35829788

RESUMO

Over the last two decades, thousands of genome-scale metabolic network models (GSMMs) have been constructed. These GSMMs have been widely applied in various fields, ranging from network interaction analysis, to cell phenotype prediction. However, due to the lack of constraints, the prediction accuracy of first-generation GSMMs was limited. To overcome these limitations, the next-generation GSMMs were developed by integrating omics data, adding constrain condition, integrating different biological models, and constructing whole-cell models. Here, we review recent advances of GSMMs from the first generation to the next generation. Then, we discuss the major application of GSMMs in industrial biotechnology, such as predicting phenotypes and guiding metabolic engineering. In addition, human health applications, including understanding biological mechanisms, discovering biomarkers and drug targets, are also summarized. Finally, we address the challenges and propose new trend of GSMMs. KEY POINTS: •This mini-review updates the literature on almost all published GSMMs since 1999. •Detailed insights into the development of the first- and next-generation GSMMs. •The application of GSMMs is summarized, and the prospects of integrating machine learning are emphasized.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Genoma , Humanos , Aprendizado de Máquina , Redes e Vias Metabólicas/genética , Modelos Biológicos
11.
Appl Microbiol Biotechnol ; 106(18): 6125-6137, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36056198

RESUMO

The combination of Escherichia coli BL21 (DE3) and the pET expression system is used extensively for the expression of various recombinant proteins (RPs). However, RP overexpression often introduces a growth burden for the host, especially in the case of toxic proteins. The key to solving this problem is to reduce the host burden associated with protein overproduction, which is often achieved by regulating the expression or activity of T7 RNAP or growth-decoupled systems. However, these strategies mainly relieve or interrupt the robbing of host resources, and do not eliminate other types of host burdens in the production process. In this study, we constructed a production system based on a dynamic equilibrium to precisely relieve the host burden and increase the RP production. The system is composed of three modules, including the overexpression of basic growth-related genes (rRNA, RNAP core enzyme, sigma factors), prediction and overexpression of key proteins using the enzyme-constrained model ec_iECBD_1354, and dynamic regulation of growth-related and key protein expression intensity based on a burden-driven promoter. Using this system, the production of many high-burden proteins, including autolysis protein and E. coli membrane proteins, was increased to varying degrees. Among them, the cytosine transporter protein (CodB) was most significantly improved, with a 4.02-fold higher production compared to the wild strain. This system can effectively reduce the optimizing costs, and is suitable for developing various types of RP expression hosts rapidly. KEY POINTS: • The basic growth-related resources can relieve the host burden from recombinant protein. • The enzyme-constrained model can accurately predict key genes to improve yield. • The expression intensity can be dynamically adjusted with changes in burden.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Biotechnol Bioeng ; 118(1): 153-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897579

RESUMO

Escherichia coli BL21 (DE3) is an excellent and widely used host for recombinant protein production. Many variant hosts were developed from BL21 (DE3), but improving the expression of specific proteins remains a major challenge in biotechnology. In this study, we found that when BL21 (DE3) overexpressed glucose dehydrogenase (GDH), a significant industrial enzyme, severe cell autolysis was induced. Subsequently, we observed this phenomenon in the expression of 10 other recombinant proteins. This precludes a further increase of the produced enzyme activity by extending the fermentation time, which is not conducive to the reduction of industrial enzyme production costs. Analysis of membrane structure and messenger RNA expression analysis showed that cells could underwent a form of programmed cell death (PCD) during the autolysis period. However, blocking three known PCD pathways in BL21 (DE3) did not completely alleviate autolysis completely. Consequently, we attempted to develop a strong expression host resistant to autolysis by controlling the speed of recombinant protein expression. To find a more suitable protein expression rate, the high- and low-strength promoter lacUV5 and lac were shuffled and recombined to yield the promoter variants lacUV5-1A and lac-1G. The results showed that only one base in lac promoter needs to be changed, and the A at the +1 position was changed to a G, resulting in the improved host BL21 (DE3-lac1G), which resistant to autolysis. As a consequence, the GDH activity at 43 h was greatly increased from 37.5 to 452.0 U/ml. In scale-up fermentation, the new host was able to produce the model enzyme with a high rate of 89.55 U/ml/h at 43 h, compared to only 3 U/ml/h achieved using BL21 (DE3). Importantly, BL21 (DE3-lac1G) also successfully improved the production of 10 other enzymes. The engineered E. coli strain constructed in this study conveniently optimizes recombinant protein overexpression by suppressing cell autolysis, and shows great potential for industrial applications.


Assuntos
RNA Polimerases Dirigidas por DNA/biossíntese , Regulação para Baixo , Escherichia coli , Expressão Gênica , Vetores Genéticos , Regiões Promotoras Genéticas , Proteínas Virais/biossíntese , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Virais/genética
13.
Microb Cell Fact ; 20(1): 189, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565359

RESUMO

Escherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.


Assuntos
Clonagem Molecular/métodos , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Recombinantes/biossíntese , Proteínas Virais/genética , Vetores Genéticos , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Proteínas Recombinantes/genética
14.
Appl Microbiol Biotechnol ; 105(12): 4919-4930, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34125275

RESUMO

Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of ß-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.


Assuntos
Microalgas , Terpenos , Vias Biossintéticas , Carotenoides , Engenharia Metabólica , Ácido Mevalônico
15.
Appl Microbiol Biotechnol ; 105(10): 3873-3882, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33907890

RESUMO

Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. KEY POINTS: • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.


Assuntos
Edição de Genes , Saccharomyces cerevisiae , Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética
16.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118252

RESUMO

Human noroviruses (huNoVs) recognize histo-blood group antigens (HBGAs) as host susceptibility factors. GII.13 and GII.21 huNoVs form a unique genetic lineage that emerged from mainstream GII NoVs via development of a new, nonconventional glycan binding site (GBS) that binds Lea antigen. This previous finding raised the question of whether the new GII.13/21 GBS really has such a narrow glycan binding spectrum. In this study, we provide solid phenotypic and structural evidence indicating that this new GBS recognizes a group of glycans with a common terminal ß-galactose (ß-Gal). First, we found that P domain proteins of GII.13/21 huNoVs circulating at different times bound three glycans sharing a common terminal ß-Gal, including Lec, lactose, and mucin core 2. Second, we solved the crystal structures of the GII.13 P dimers in complex with Lec and mucin core 2, which showed that ß-Gal is the major binding saccharide. Third, nonfat milk and lactose blocked the GII.13/21 P domain-glycan binding, which may explain the low prevalence of GII.13/21 viruses. Our data provide new insight into the host interactions and epidemiology of huNoVs, which would help in the control and prevention of NoV-associated diseases.IMPORTANCE Evidence from both phenotypic binding assay and structural study support the observed interactions of human noroviruses (huNoVs) with histo-blood group antigens (HBGAs) as receptors or attachment factors, affecting their host susceptibility. GII.13 and GII.21 genotypes form a unique genetic lineage that differs from the mainstream GII huNoVs in their unconventional glycan binding site. Unlike the previous findings that GII.13/21 genotypes recognize only Lea antigen, we found in this study that they can interact with a group of glycans with a common terminal ß-Gal, including Lec, lactose, and mucin core 2. However, this wide glycan binding spectrum in a unique binding mode of the GII.13/21 huNoVs appears not to increase their prevalence, probably due to the existence of decoy glycan receptors in human gastrointestinal tract limiting their infection. Our findings shed light on the host interaction and epidemiology of huNoVs, which would impact the strategy of huNoV control and prevention.


Assuntos
Antígeno CA-19-9/metabolismo , Galactose/metabolismo , Norovirus/fisiologia , Ligação Viral , Antígenos de Grupos Sanguíneos/metabolismo , Genótipo , Humanos , Norovirus/classificação , Norovirus/genética , Ligação Proteica
17.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593033

RESUMO

Group/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two ß-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines.IMPORTANCE Group/species C rotaviruses (RVCs), members of Reoviridae family, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Virais/metabolismo , Rotavirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Ligação Viral , Sistema ABO de Grupos Sanguíneos , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Gastroenterite/patologia , Gastroenterite/virologia , Hemaglutinação/fisiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Oligossacarídeos de Cadeias Ramificadas , Infecções por Rotavirus/patologia , Infecções por Rotavirus/virologia , Alinhamento de Sequência
18.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720519

RESUMO

Rotaviruses (RVs), which cause severe gastroenteritis in infants and children, recognize glycan ligands in a genotype-dependent manner via the distal VP8* head of the spike protein VP4. However, the glycan binding mechanisms remain elusive for the P[II] genogroup RVs, including the widely prevalent human RVs (P[8], P[4], and P[6]) and a rare P[19] RV. In this study, we characterized the glycan binding specificities of human and porcine P[6]/P[19] RV VP8*s and found that the P[II] genogroup RV VP8*s could commonly interact with mucin core 2, which may play an important role in RV evolution and cross-species transmission. We determined the first P[6] VP8* structure, as well as the complex structures of human P[19] VP8*, with core 2 and lacto-N-tetraose (LNT). A glycan binding site was identified in human P[19] VP8*. Structural superimposition and sequence alignment revealed the conservation of the glycan binding site in the P[II] genogroup RV VP8*s. Our data provide significant insight into the glycan binding specificity and glycan binding mechanism of the P[II] genogroup RV VP8*s, which could help in understanding RV evolution, transmission, and epidemiology and in vaccine development.IMPORTANCE Rotaviruses (RVs), belonging to the family Reoviridae, are double-stranded RNA viruses that cause acute gastroenteritis in children and animals worldwide. Depending on the phylogeny of the VP8* sequences, P[6] and P[19] RVs are grouped into genogroup II, together with P[4] and P[8], which are widely prevalent in humans. In this study, we characterized the glycan binding specificities of human and porcine P[6]/P[19] RV VP8*s, determined the crystal structure of P[6] VP8*, and uncovered the glycan binding pattern in P[19] VP8*, revealing a conserved glycan binding site in the VP8*s of P[II] genogroup RVs by structural superimposition and sequence alignment. Our data suggested that mucin core 2 may play an important role in P[II] RV evolution and cross-species transmission. These data provide insight into the cell attachment, infection, epidemiology, and evolution of P[II] genogroup RVs, which could help in developing control and prevention strategies against RVs.


Assuntos
Polissacarídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Especificidade de Hospedeiro , Humanos , Mutação , Filogenia , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Infecções por Rotavirus/virologia , Homologia de Sequência , Especificidade por Substrato , Suínos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
19.
Appl Microbiol Biotechnol ; 103(8): 3239-3248, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30877356

RESUMO

Microalgae are arguably the most abundant single-celled eukaryotes and are widely distributed in oceans and freshwater lakes. Moreover, microalgae are widely used in biotechnology to produce bioenergy and high-value products such as polyunsaturated fatty acids (PUFAs), bioactive peptides, proteins, antioxidants and so on. In general, genetic editing techniques were adapted to increase the production of microalgal metabolites. The main genome editing tools available today include zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas nuclease system. Due to its high genome editing efficiency, the CRISPR/Cas system is emerging as the most important genome editing method. In this review, we summarized the available literature on the application of CRISPR/Cas in microalgal genetic engineering, including transformation methods, strategies for the expression of Cas9 and sgRNA, the CRISPR/Cas9-mediated gene knock-in/knock-out strategies, and CRISPR interference expression modification strategies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Microalgas/genética , Proteína 9 Associada à CRISPR/genética , Regulação da Expressão Gênica , Marcação de Genes , Engenharia Genética , RNA Guia de Cinetoplastídeos/genética , Transformação Genética
20.
Bioprocess Biosyst Eng ; 42(1): 71-81, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30267145

RESUMO

The ω-3/long-chain polyunsaturated fatty acids (LC-PUFAs) play an important role in human health, but they cannot be synthesized in sufficient amounts by the human body. In a previous study, we obtained an engineered Schizochytrium sp. strain (HX-RS) by exchanging the acyltransferase (AT) gene, and it was able to co-produce docosahexaenoic acid and eicosapentaenoic acid. To investigate the mechanism underlying the increase of PUFA content in HX-RS, the discrepancies of fermentation performance, key enzyme activities and intracellular metabolites between HX-RS and its wild-type parent strain (WTS) were analyzed via fed-batch fermentation in 5-L bioreactors. The results showed that the cell dry weight (CDW) of HX-RS was higher than that of the WTS. Metabolomics combined with multivariate analysis showed that 4-aminobutyric acid, proline and glutamine are potential biomarkers associated with cell growth and lipid accumulation of HX-RS. Additionally, the shift of metabolic flux including a decrease of glyceraldehyde-3-phosphate content, high flux from pyruvate to acetyl-CoA, and a highly active glycolysis pathway were also found to be closely related to the high PUFA yield of the engineered strain. These findings provide new insights into the effects of exogenous AT gene expression on cell proliferation and fatty acid metabolism.


Assuntos
Ácidos Graxos Insaturados/química , Fermentação , Estramenópilas/metabolismo , Bioengenharia/métodos , Biomarcadores/metabolismo , Reatores Biológicos , Biotecnologia/métodos , Proliferação de Células , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/química , Glutamina/química , Metabolismo dos Lipídeos , Lipídeos/química , Metabolômica , Análise Multivariada , Prolina/química , Ácido gama-Aminobutírico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA