Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Heart Fail Clin ; 11(1): 95-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432478

RESUMO

More countries around world have begun to use cardiac rehabilitation in patients diagnosed with chronic heart failure (HF). Asia is the largest continent in the world and, depending on its economy, culture, and beliefs, a given Asian country differs from Western countries as well as others in Asia. The cardiac rehabilitation practice patterns for patients with HF are somewhat different in Asia. In addition to the formal pattern of Western practice, it also includes special techniques and skills, such as Taiji, Qigong, and Yoga. This article describes cardiac rehabilitation patterns for patients with HF in most Asian countries and areas.


Assuntos
Terapia por Exercício/normas , Tolerância ao Exercício/fisiologia , Conhecimentos, Atitudes e Prática em Saúde , Insuficiência Cardíaca , Ásia/epidemiologia , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/reabilitação , Humanos , Morbidade/tendências
2.
Zhonghua Jie He He Hu Xi Za Zhi ; 36(9): 661-6, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24423819

RESUMO

OBJECTIVE: To explore the characteristics of oxygen uptake efficiency (OUE) in patients with chronic obstructive pulmonary disease (COPD), and to analyze the relationship between OUE and the exercise capacity. METHODS: Pulmonary function test and cardiopulmonary exercise test were performed in 59 patients with stable COPD (grade I, n = 15; grade II, n = 16; grade III, n = 19; grade IV, n = 9) and 29 healthy volunteers of the same age. Their successive breathing respiratory exchange parameters were collected and analyzed. t test and χ(2) test were used for 2 sample comparison, while multiple comparisons among groups were performed by using single factor analysis of variance. Correlation analysis was done by Pearson correlation test. RESULTS: Compared with the normal control group [(2.2 ± 0.4) L·min(-1)·lg(L·min(-1))(-1); (35 ± 4) ml/L], the OUES and OUEP of the COPD patient group [(1.9 ± 0.3) L·min(-1)·lg(L·min(-1))(-1); (31 ± 5) ml/L]were significantly lower (t = 4.57, 3.39, all P < 0.01) . The OUE of the grade I patients showed no significant difference compared with the normal control group (t = 0.36-1.49, all P > 0.05), while the OUES of the grade II-IV patients [(2.05 ± 0.26), (1.76 ± 0.28) and (1.63 ± 0.19) L·min(-1)·lg(L·min(-1))(-1)] decreased significantly compared to the normal control group [(2.23 ± 0.39) L·min(-1)·lg(L·min(-1))(-1); t = 2.42-5.26, all P < 0.05]. The OUEP and the OUE at the anaerobic threshold of the grade II-III patients [(31 ± 4) and (31 ± 5), (29 ± 5) and (29 ± 5) ml/L] decreased significantly compared to the normal control group [(35 ± 4) and (34 ± 4) ml/L, t = 2.18-4.83, all P < 0.05]. The OUES, OUEP and the OUE at the anaerobic threshold in COPD patients were correlated (r = 0.500-0.625, all P < 0.01) positively with the exercise tolerance (peak VO2% pred). CONCLUSIONS: The oxygen uptake efficiency of patients with COPD is significantly reduced compared to that of the normal subjects, and is correlated positively with the exercise capacity.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória
3.
Eur J Appl Physiol ; 112(3): 919-28, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21695524

RESUMO

The relationship of oxygen uptake [Formula: see text] to ventilation [Formula: see text], i.e., oxygen uptake efficiency (OUE) is known to differ between normal subjects and patients with congestive heart failure. However, only the oxygen uptake efficiency slope (OUES, i.e., slope of [Formula: see text] has previously been reported. To understand the physiology and to improve the usefulness of OUE in assessing cardiovascular function, we analyzed the complete response pattern of OUE during entire incremental exercise tests and ascertained effect of age, body size, gender, fitness, and ergometer type on exercise OUE to generate reference values in normal healthy subjects. We investigated the effect of age, gender, and fitness on OUE using incremental cardiopulmonary exercise in 474 healthy subjects, age 17-78 years, of which 57 were highly fit. The final methods of OUE analysis were: (1) OUE plateau at the highest values (OUEP), (2) OUE at anaerobic threshold (OUE@AT), and (3) OUES using the entire exercise period. The OUEP and OUE@AT were similar, highly reproducible, less variable than the OUES (p < 0.0001), and unaffected by the study sites or types of ergometry. The resultant prediction equations from 417 normal subjects for men were OUEP (mL/L) = 42.18 - 0.189 × years + 0.036 × cm and OUES [L/min/log(L/min)] = -0.610 - 0.032 × years + 0.023 × cm + 0.008 × kg. For women, OUEP (mL/L) = 39.16 - 0.189 × years + 0.036 × cm and OUES [L/min/log(L/min)] = -1.178 - 0.032 × years + 0.023 × cm + 0.008 × kg. OUE@AT was similar to OUEP. Extreme fitness has a minimal effect on OUEP. OUEP is advantageous, since it measures maximal oxygen extraction from ventilated air but does not require high intensity exercise. The OUEP is a non-invasive parameter dependent only on age, gender, height, and cardiovascular health.


Assuntos
Consumo de Oxigênio/fisiologia , Oxigênio/farmacocinética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Limiar Anaeróbio/fisiologia , Eficiência/fisiologia , Exercício Físico/fisiologia , Teste de Esforço/métodos , Teste de Esforço/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Aptidão Física/fisiologia , Valores de Referência , Adulto Jovem
4.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(6): 595-603, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-37308402

RESUMO

Objective: To explore and study the clinical usefulness of continuous dynamic recording of left cardiac function changes forevaluation the improvement in patients with chronic disease after 3 months of intensive control of individualized precision exercise overall manage program. Methods: From 2018 to 2021, 21 patients with chronic cardiovascular and cerebrovascular metabolic diseases mainly controlled by our team were selected to complete the cardiopulmonary exercise test (CPET) and Non-invasive synchronous cardiac function detector (N-ISCFD), electrocardiogram, radial pulse wave, jugular pulse wave and cardiogram data were continuously recorded for 50s.According to the titration results under CPET and continuous functional parameters monitoring, a holistic plan with individualized moderate exercise intensity as the core was developed for 3 months of intensive management, and then N-ISCFD data collection was repeatedafter signing the informed consent. All N-ISCFD data were analyzed in the 50s according to the optimal report mode of Fuwai Hospital and 52 cardiac functional indexes were calculated. The data before and after the enhanced control were compared and the paired T-test was used to statistically analyze the changes of groups. Results: Twenty-one patients with chronic diseases (16 male and 5 female) were (54.05±12.77,29~75) years, BMI (25.53±4.04,16.62~31.7) kg/m2.Comparison with baseline,the whole group analysis: ①The body weight, BMI, systolic blood pressure and diastolic blood pressure of patients were significantly decreased(P<0.01).②CPET Peak VO2 was (64.93±24.22, 26.96~103.48) %Pred before enhanced control, and (85.22±30.31, 43.95~140.48) %Pred after enhanced control, and increased (35.09±27.87, 0.12~129.35) % after enhanced control compared with before enhanced control. The AT, Peak VO2/HR, Peak Work Rate, OUEP, FVC, FEV1, FEV3/FVC% and MVV were significantly increased (P<0.01) and the Lowest VE/VCO2 and VE/VCO2 Slope were significantly decreased(P<0.01).③Core indicators of left heart function:Ejection fraction was significantly increased from (0.60±0.12,0.40~0.88) to(0.66±0.09, 0.53~0.87)(P< 0.01), by (12.39±14.90,-12.32~41.11)%. The total peripheral resistance was significantly decreased from (1579.52±425.45,779.46~2409.61) G/(cm4·s),to(1340.44±261.49,756.05~1827.01) G/(cm4·s)(P<0.01), by (12.00±17.27,37.79~28.61) %.The left stroke index, cardiac total power, ejective pressure and left ventricular end diastolic volumewere significantly improved (P<0.05).The change analysis of each indicator for each patient is shown in the individualized analysis section of this study. Conclusion: Use CPET and continuous functional monitoring we can safely and effectively develop the overall program of individualized exercise in patients with chronic diseases. Long-term intensive management and control can safely and effectively significantly improve the cardiovascular function of patients. Continuous dynamic recording of changes in left and right cardiac functional parameters can be a simple way to supplement CPET to evaluate cardiovascular function.


Assuntos
Teste de Esforço , Coração , Humanos , Feminino , Masculino , Resultado do Tratamento , Doença Crônica
5.
Artigo em Zh | MEDLINE | ID: mdl-34672466

RESUMO

Objective: To evaluate the value of cardiopulmonary exercise testing in diagnosing coronary atherosclerotic heart disease(CHD). Methods: A total of 156 patients with suspected CHD(The patient's condition is relatively stable, aged 18 to 80 years)were performed for cardiopulmonary exercise testing, ECG exercise test and coronary angiography. Based on the results of coronary angiography, the sensitivity, specificity and diagnostic value of relevant indicators of cardiopulmonary exercise testing (CPET) parameters (Peak VO2%pred、Peak O2 pulse%pred、ΔVO2/ΔWR) in diagnosing CHD were analyzed by statistical methods based on the results of coronary angiography. Results: Useing the best cut-off point of Peak VO2 ≤69%pred for detecting CHD, the sensitivity was 55.1%, the specificity was 77.0%, and the AUC was 0.698. The sensitivity, specificity and AUC of peak O2 pulse%pred were 50.7%, 72.4% and 0.58 respectively. ΔVO2/ΔWR sensitivity in diagnosing CHD was 44.9%, specificity was 87.4%, AUC was 0.647. The sensitivity of peak O2 pulse%pred and ΔVO2/ΔWR were much higher than the ECG exercise test, the difference was statistically significant (P<0.01). Conclusion: The sensitivity of some indexes of CPET in diagnosing CHD was better than ECG exercise test, the specificity and diagnostic value of the optimal cut-off point are high. CPET has predictive value for the diagnosis of CHD, it can diagnose CHD early and accurately.


Assuntos
Doença das Coronárias , Teste de Esforço , Angiografia Coronária , Frequência Cardíaca , Humanos
6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 169-176, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672155

RESUMO

Objective: To find out the relationship between the duration and amplitude of oscillatory breathing (OB) and their exercise capacity in patients with chronic heart failure (CHF) we did this study. Methods: Two hundred and thirty-seven CHF patients performed a maximum incremental upright cycle ergometry cardiopulmonary exercise testing (CPET). Respiratory gas exchange was measured on a breath-by-breath basis throughout the test. OB was defined as 3 or more continuous cycle fluctuations of ventilation during CPET, and the amplitude of VE oscillations exceed 25% of concurrent mean value. The CHF patients with OB (OB+) were divided into 3 sub-groups according to their Peak VO2. Group1 (mild OB+) Peak VO2 of ≥16 ml/min/kg, group 2 (moderate OB+) Peak VO2 is between 12~16 ml/min/kg, group 3 (severe OB+) Peak VO2 ≤ 12 ml/(min·kg). Results: There were 78(32.6%) patients detected as OB+ in 237 CHF patients. Among OB+ patients, OB duration in s related negatively to Peak VO2 in mL/min/kg (r=-0.82), Peak VO2 in %pred (r=-0.65), VO2 at AT (r=-0.78), and related positively to VE/VCO2 at AT (r=0.61). Conclusion: OB duration is related negatively to exercise capacity of CHF patients.


Assuntos
Exercício Físico , Insuficiência Cardíaca , Doença Crônica , Teste de Esforço , Humanos , Respiração
7.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 189-194, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672157

RESUMO

Objective: Cardiopulmonary exercise testing(CPET)was used to evaluate objectively and quantitatively the holistic function in patients accepted preoperative chemotherapy. Methods: This study investigated reliable objective and quantitative assessment methods of symptom limited maximal incremental CPET before and after chemotherapy in patients with 6 esophageal cancer. We re-analyzed the changes in cardiopulmonary, metabolism, and other functions physiologic parameters of CPET. Results: After patients accepted preoperative chemotherapy,Peak oxygen consumption (Peak VO2)(P<0.05), anaerobic threshold (AT) and peak oxygen pulse (Peak O2 paulse), oxygen uptake efficiency plateau (OUEP)were decreased (P<0.01). The lowest of ventilatory equivalent for carbon dioxide and slope of ventilatory equivalent for carbon dioxide were increased (P<0.05). For individual of all patients, except one patient's Peak VO2 and OUEP slightly increased,all of the above indicators were reduced in the remaining patients. The lowest of ventilatory equivalent for carbon dioxide and slope of ventilatory equivalent for carbon dioxide increased in all the patients,except one patient's slope of ventilatory equivalent for carbon dioxide decreased slightly. The heart rate of 6 patients showed an upward trend in each state, but there was no statistical difference. Three of the 6 patients had blood pressure measurement, and the other 3 patients had a significant decrease in diastolic blood pressure (P<0.05) except at extreme state.The patients had lower oxygen uptake at AT(P<0. 01) and extreme state (P<0. 05) than that before chemotherapy. The oxygen uptake efficiency in a warm-up state(P<0. 01),and an AT state(P<0. 05)after chemotherapy were lower than those before chemotherapy. The ventilator equivalent for carbon dioxide after chemotherapy was in the each states presented an upward trend, but only ventilator equivalent for carbon dioxide after in the warm-up state (P<0.05) and AT(P<0.01) had statistical significance. oxygen pulse in all four states showed a decreasing trend, and only at AT (P<0.05) showed a significant decrease.After chemotherapy,the PETCO2 in a warm-up state after chemotherapy was lower than that before chemotherapy(P<0. 05); the PETO2 in a quiescent state,a warm - up state,and an extreme state after chemotherapy were higher than those before chemotherapy;but there was nosignificant difference. Conclusion: The holistic functional capacity of patients with esophageal significantly decreased after 136 days chemotherapy. The circulatory functionalandentilator functional parameters significantly decreased after chemotherapy.


Assuntos
Teste de Esforço , Terapia Neoadjuvante , Limiar Anaeróbio , Frequência Cardíaca , Humanos , Consumo de Oxigênio
8.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 195-201, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672158

RESUMO

Objective: To explore the value of predicting accurately the risk of complications after thoracoscopic lung resection by preoperative CPET index. Methods: Selected 448 patients who completed CPET with static pulmonary function test (PFT) before operation, followed up to discharge after operation, and were divided into groups according to the presence or absence of complications: 418 cases had no complications and 30 cases had complications (including 1 death). Calculate peak oxygen uptake (Peak VO2) and other core indicators, compare the similarities and differences between patients with and without complications, and calculate the best cut value and odds ratio (OR). Results: ①In this study, there were 184 males and 264 females, aged (54±12) (16~79) years old, 85 cases with smoking, 23 cases with lymph node metastasis, 68 cases with hypertension, 45 cases with diabetes. Peak VO2 and Peak WR are respectively (93.31±17.73)(44~158)%pred and (99.70±22.93)(53~179)%pred. FVC, VC and FEV1/FVC are respectively (99.46±15.60)(42~150)%pred, (101.58±15.77)(44~148) %pred and (98.36±9.27)(52~134) %pred. 2There are significant differences(P<0.01) in gender, age, smoking history, lymph node metastasis and core indicators of Peak VO2 (%pred), Peak WR (%pred), FVC, VC, Rest SBP and Peak SBP . There are also differences(P<0.05) in Peak VO2 (ml/(min·kg)), Peak VO2/HR (%pred), VE/VCO2 slope, VE/ VCO2@AT, Peak HR (bmp), RER, FEV1 and fasting blood glucose. No difference in other indicators. ③OR are respectively 4.24 and 3.72 (P<0.01) when the cutting points are Rest SBP(140 mmHg) and FEV1(80%pred). While the OR of Peak VO2(80%pred)、Peak SBP(180 mmHg)、Peak VO2 (20 ml/(min·kg)) and VE/VCO2 Slope(30) are respectively2.66、2.62、2.43 and 2.12 (P<0.05). Conclusion: For patients undergoing thoracoscopic lung resection with good function, the preoperative CPET core indicators can accurately predict the risk of postoperative complications, which is worthy of in-depth study.


Assuntos
Teste de Esforço , Estado Funcional , Idoso , Feminino , Humanos , Pulmão , Masculino , Complicações Pós-Operatórias , Prognóstico
9.
Artigo em Zh | MEDLINE | ID: mdl-34672463

RESUMO

Objective: The aim of this study is to determine the changes of gas exchange parameters during ramp incremental cardiopulmonary exercise test (CPET) in patients with pulmonary hypertension (PH) could identify the right to left shunt (R-L Shunt). Methods: We did a retrospective analysis of exercise gas exchange parameters for 73 PH patients and 14 normal subjects as control, in Fuwai Hospital from October 2016 to August 2017, who did CPET with signature on content form. The gas exchange data of CPET were double-blindly independently interpreted by four export-doctors. According to the reading results of CPET, the PH patients were divided into four groups: ① R-L shunt positive group, ② R-L shunt suspicious group, ③R-L shunt negative group, ④late open R-L Shunt positive group. Results: Minute ventilation (VE), ventilatory equivalents for carbon dioxide and oxygen (VE/VCO2, VE/VO2), end-tidal partial pressure of oxygen (PETO2)in R-L shunt positive group were significantly increased ((7.36 ± 2.72) L/min, (1.84± 3.59), (5.02 ±4.34), (3.75±2.64) mmHg) at the beginning of exercise, and were also significantly higher than the control ((4.26 ± 2.59) L/min, (2.22± 2.08), (1.46 ±4.68), (3.96 ± 2.82) mmHg); Partial pressure of carbon dioxide in end expiratory gas (PETCO2) was decreased (-1.63 ±1.66) mmHg, and was significantly lower than control (2.22 ± 2.08) mmHg (P<0.01). Respiratory quotient (RER), carbon dioxide, VE/VCO2, VE/VO2, PETO2 in late open R-L Shunt positive group were suddenly increased ((0.40 ± 0.08), (11.07 ± 5.60),(30.55 ±7.89), (13.72 ±2.21) mmHg) at the end of exercise near the peak, significantly higher than control too ((0.38± 0.12), (5.67± 4.60), (4.54 ± 3.83), (5.51± 4.24) mmHg); PETCO2 was suddenly decreased at the end of the exercise compared to the resting stage (-6.82 ± 1.96) mmHg, and was significantly different from the control (5.67 ±4.60) mmHg. Carbon dioxide ventilatory efficiency, oxygen uptake ventilatory efficiency relative to the peak power (-8.38 ±3.24, -13.14 ± 6.47) at the recovery stage in late open R-L shunt positive group are significantly lower than control (6.22 ±2.87, 16.56± 4.20) (P<0.01). Conclusion: Cardiopulmonary function and ventilation efficiency of patients withpulmonary hypertension are significantly decreased; pulmonary hypertension and right to left shunt in patients not only resting ventilation efficiency is limited more serious; The characteristics of R-L shunt are the sudden increase of PETO2, VE/ VCO2, VE, RER and sudden decrease of PETCO2 and VO2/ VE at the beginning of exercise, and commonly companied with decreased SpO2. For the delay open R-L shunt, these changes occurred near the peak exercise rather than the beginning, and these characteristic changes quickly reversed after stopping exercise.


Assuntos
Hipertensão Pulmonar , Exercício Físico , Teste de Esforço , Coração , Humanos , Estudos Retrospectivos
10.
Artigo em Zh | MEDLINE | ID: mdl-34672468

RESUMO

Objective: To evaluate the impacts of outpatient vs inpatient exercise training (ET) on cardiac rehabilitation efficacy among patients with chronic heart failure (CHF). Methods: Thirty six patients who were diagnosed with CHF in Beijing Rehabilitation Hospital from September 2015 to September 2018, were randomly divided into three groups: control group (n=12), outpatient ET group (n=12) and inpatient ET group (n=12). Patients in control group were treated with conventional cardiac rehabilitation without ET, patients in outpatient and inpatient ET groups were treated with holistic cardiac rehabilitation with the core of ET according to individualized exercise prescription based on cardiopulmonary exercise testing (CPET). Exercise intensity of cycle ergometer was Δ50% power above anaerobic threshold (AT), 30 min/d, 5 d/week, for 12 weeks. General information, CPET parameters, echocardiogram, 6 minute walking distance (6MWD) and quality of life (QoL) score of three groups of patients before and after treatment were recorded. Results: All patients in 3 groups finished symptom-limited CPET and patients in ET groups finished 12 weeks - ET safely without complications. Before treatment, there were no significant differences in CPET parameters, echocardiogram results, 6MWD and QoL score among 3 groups (P>0.05). After treatment, AT (ml/min, ml/(min·kg), %pred), peak oxygen uptake (VO2) (ml/min, ml/(min·kg), %pred), peak oxygen pulse(ml/beat), peak workload(W/min, %pred), left ventricular ejection fraction (LVEF) and 6MWD of patients in outpatient and inpatient ET groups were significantly higher than those of patients in control group (P<0.05), QoL score of patients in outpatient and inpatient ET groups was lower than that of patients in control group(P<0.05). To be noted, there were no obvious differences in CPET indexes, echocardiogram results, 6MWD and QoL score in patients between outpatient ET group and inpatient ET group (P>0.05). For patients in control group, there were no significant differences in above parameters before and after treatment (P>0.05). AT(ml/min, ml/(min·kg)), Peak VO2 (ml/min, ml/(min·kg), %pred), peak oxygen pulse(ml/beat, %pred), peak workload(W/min, %pred), LVEF and 6MWD of patients in outpatient and inpatient ET groups were significantly higher than those before treatment (P<0.05), QoL score of patients in outpatient and inpatient ET groups after treatment was significantly lower than that before treatment (P<0.05). Conclusion: Outpatient ET can improve the cardiopulmonary function, exercise tolerance and QoL of CHF patients, which has no significant difference compared with inpatient ET, indicating that outpatient cardiac rehabilitation, as an effective rehabilitation mode, is deserved to be applied widely.


Assuntos
Reabilitação Cardíaca , Insuficiência Cardíaca , Exercício Físico , Insuficiência Cardíaca/terapia , Humanos , Pacientes Internados , Pacientes Ambulatoriais , Qualidade de Vida , Volume Sistólico , Função Ventricular Esquerda
11.
Artigo em Zh | MEDLINE | ID: mdl-34672458

RESUMO

Objective: To observe and study the resting radial artery pulse wave and the pulse wave changes after a single individualized exercise in young healthy normal subjects. Methods: We selected 16 young healthy graduate students, advanced training doctors, and visiting scholars from Fuwai Hospital without any disease diagnosis and low daily exercise. They first completed the symptom-restricted limit cardiopulmonary exercise testing (CPET). A single individualized exercise with Δ50% power as the exercise intensity was completed within one week after CPET. We measured and recorded 50 s pulse wave data before exercise and 10 min, 20 min, 30min after exercise, let the instrument automatically fix the point and then manually recheck to obtain each pulse wave characteristic point: starting point (B), main wave peak point (P1), trough of a repulse point (PL), crest of a repulse point (P2), and end point (E), and the raw data of the abscissa (time T) and ordinate (amplitude Y) corresponding to each point were derived from the instrument. We treated the end point E of the previous pulse wave as the start point B of the next wave, returned TB to zero, and got the main observation indicators: YB, YP1, YPL, YP2 and TP1, TPL, TP2, TE, and calculated out ΔYP1 (YP1-YB), ΔYPL (YPL-YB), ΔYP2 (YP2-YB), TE-TPL, (TE-TPL)/TPL, pulse rate, S1 (the slope of main wave ascending branch), S2 (the slope of dicrotic ascending branch), ΔYP2-ΔYPL and TP2-TPL as secondary observation indicators; defined the dicrotic wave with obvious crest as YP2>YPL, and calculated the occurrence rate of dicrotic wave with obvious crest (number of waveforms with YP2>YPL in 50 s /total number of waveforms×100%). We analyzed individually the 50 s pulse wave data of each subject before and after exercise, and then averaged all the data for overall analysis. Results: ①16 healthy young subjects (males 10, females 6), age (30.6±6.4, 24~48) years old; height (170.4±8.2, 160~188) cm; body mass (63.9±12.8, 43~87) kg. ②YB (87.2±5.8, 78.1~95.9), YP1 (223.5±15.8, 192.7~242.3), YPL (122.8±7.8, 110.0~133.8), YP2 (131.4±4.9, 116.7~137.5), TP1 (126.2±42.2, 94.2~280.0), TPL (360.2±44.8, 311.5~507.3), TP2 (432.4±50.8, 376.2~589.0), TE (899.7±86.9, 728.3~1042.0). ΔYP1 (136.3±19.9, 96.8~ 158.6), ΔYPL (35.7±10.7, 16.0~55.7), ΔYP2 (44.3±8.1, 22.5~56.5), TE-TPL (539.5±79.3, 405.9~691.3), (TE-TPL)/TPL (1.5±0.3, 0.8~2.0), pulse rate (67.3±6.6, 57.6~82.4), S1 (1.1±0.2, 0.6~1.4), S2 (0.1±0.1, 0.0~0.2), ΔYP2-ΔYPL (8.6±6.1, 0.9 ~19.8), TP2-TPL (72.3±19.9, 38.3~108.4). ③10 min after exercise, YPL (97.0±13.2 vs 122.8±7.8), YP2 (109.6±12.8 vs 131.4±4.9), ΔYPL (6.6±9.8 vs 35.7±10.7), ΔYP2 (19.3±11.2 vs 44.3±8.1), TE (667.8±123.1 vs 899.7±86.9), TE-TPL (330.2±128.4 vs 539.5±79.3), (TE-TPL)/TPL (1.0±0.4 vs 1.5±0.3) decreased, while the pulse rate (92.2± 14.0 vs 67.3±6.6), ΔYP2-ΔYPL (12.7±9.7 vs 8.6±6.1), TP2-TPL (98.0±38.1 vs 72.3±19.9) increased (all P<0.05). The trend of pulse wave changes at 20 min and 30 min after exercise was consistent with that at 10 min after exercise, but from 20 min, most of the indicators gradually recovered to the resting level before exercise. ④The incidence of dicrotic waves with obvious peaks in 16 young healthy persons at rest was 94.5%, and increased at 10 min (96.3%), 20 min (98.5%), and 30 min (99.8%) after exercise (all P<0.01). Among them, the incidence of dicrotic waves with obvious peaks before and after exercise was maintained at about 100% in 10 subjects. The appearance rate of 2 cases had reached 100% before exercise, but it decreased at 10 minutes after exercise, and then continued to increase, at 30 minutes recovered to 100%. Three subjects had a low resting rate and started to increase after exercise. In 1 case, the rate was low only 20 minutes after exercise, considering the influence of human factors. Conclusion: The influence of exercise on the pulse wave of normal people is mainly reflected in the dicrotic wave. On the whole, after a single precise power exercise, the position of the dicrotic wave is reduced, the amplitude is deepened, and the appearance rate of the dicrotic wave with obvious crest is generally increased, and this change can be maintained for at least 30 minutes. From an individual point of view, the response trend of each subject is different.


Assuntos
Teste de Esforço , Exercício Físico , Artérias , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade
12.
Artigo em Zh | MEDLINE | ID: mdl-34672464

RESUMO

Objective: Pulmonary function testing (PFT) and electrocardiograph (ECG) are the vital components of the cardiopulmonary exercise test (CPET). This study is to investigate clinical characteristics of abnormal PFT as pulmonary ventilation dysfunction, small airway dysfunction and gas exchange (diffusion) dysfunction. Methods: Across-sectional study was conducted The 76 698 outpatient subjects who received health examination from December 2016 to February 2019 in Henan Provincial People's Hospital were recruited. The results of the ECG, PFT were compared among different sex and age sub-groups. Then the severity of their impaired PFT were analyzed. Results: Among 76 698 subjects, 39 237 subjects were male and 37 461 subjects were female. There were total 71.04% patients with abnormal ECG. There were total 28 273 (36.86%) patients with abnormal pulmonary ventilation function. The 17 570 patients (44.78%) (17 570/39 237) were male, 10 703 patients (28.57%) (10 703/37 461) were female, both the number and percentage of abnormal pulmonary ventilation function in male was significantly more than these in female (P<0.01). The percentage detectable rates of male were significant higher than that of female in all the different age sub-groups: 20~29, 30~39, 40~49, 50~59, 60~69 and ≥70 year (P<0.01). The total detectable abnormal rate of small airway dysfunction were 43 160 and 56.26% (43 160/76 698). The 57.73% (22 661/39 237) in male was significantly higher than 54.72% (20 499/37 461) in female (x2=74.87, P<0.01). The detectable abnormal rate of small airway dysfunction in male were lower than female in 30~39 year and 40~49year sub-groups (P<0.05), but were significantly higher in 20~29, 50~59, 60~69, and ≥70 yr sub-groups (P<0.05). Abnormal gas exchange (diffusion) dysfunction were detected in 28.54% (12 940/45 107) subjects. They were 7 433 (30.55%) in male,and 5 507 (26.50%)in female with significant gender difference (P<0.05). The abnormal diffusion detectable rate in 30~39 year sub-group was significant higher in female than in male (P<0.05), and were slightly higher without significant difference in 20~29 and 40~49 year sub-groups (P>0.05), but were significant lower in female than male in 50~59, 60~69 and ≥70 year sub-groups (P<0.05). Conclusion: The abnormal detectable rates in ECG, pulmonary ventilation dysfunction, gas exchange dysfunction and small airway dysfunction were higher in male than female, and higher in elder ≥70 year subgroup than all other younger age subgroups.


Assuntos
Teste de Esforço , Pulmão , Idoso , Feminino , Humanos , Masculino , Exame Físico , Ventilação Pulmonar , Testes de Função Respiratória
13.
Artigo em Zh | MEDLINE | ID: mdl-34672465

RESUMO

Objective: The patients with Hypertrophic CardioMyopathy (HCM), characterized by hypertrophy of the myocardium with a high risk of sudden death, was less clear for the exercise pathophysiology. Under the guidance of holistic integrative physiology and medicine (HIPM), the ramp protocol symptom-limited CardioPulmonary Exercise Testing (CPET) is the only method to evaluate the overall functional status of human body. We investigated the CPET pathophysiology in patients with HCM. Methods: From April 2017 to January 2020, 244 subjects were enrolled after signed the informed consent form and completing CPET in Fuwai Hospital. They 219 HCM patients and 25 healthy normal subjects as control (NS). The changes of CPET core parameters between two them were calculated, compared and did Individual analysis. Results: ①The gender of HCM was 163 maleand 56 female. The gender of NS was 11 male and 14 female. The age of HCM was (46.7±12.8, 16.0~71.0) year; NS was (43.7±10.4, 26.0~61.0) year.②The core CPET parameters of HCM: peak oxygen uptake (Peak VO2) was (65.2±13.8, 22.8~103.4) %pred; anaerobic threshold (AT) was (66.4±13.0, 33.7~103.5) %pred; Peak O2 pulse was (84.3±19.0, 90.9~126.0)%pred; oxygen uptake efficiency platform (OUEP) was (99.2±13.4, 69.1~155.5) %pred; Lowest VE/VCO2 was (108.0±13.2, 70.4~154.0)%pred; VE/VCO2 Slope was (108.5±17.9, 66.9~164.9)%pred. Compared with NS, the Peak VO2, AT, Peak O2 pulse, and OUEP were significantly decreased (P<0.01 or P<0.05), but the Lowest VE/VCO2 and VE/VCO2 Slope were significantly increased (P<0.05). For Individual analysis of the overall functional status of CPET, some were very sever but some HCM were still within the normal range.③ The Peak VO2 was positively correlated with AT, OUEP, Peak O2 pulse, and peak systolic blood pressure, but was negative correlated with Lowest VE/VCO2 and VE/VCO2 Slope. Conclusion: CPET is safe and specific characteristics for patients with HCM, which deserve further research and clinical application. Under HIPM guidance, CPET can not only be used for overall functional evaluation, disease diagnosis and differential diagnosis, risk stratification, curative effect evaluation and accurate prognostic prediction, but also be utilized in formulating the individualized training prescription and management of chronic diseases.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Limiar Anaeróbio , Teste de Esforço , Feminino , Humanos , Hipertrofia , Masculino
14.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(1): 96-103, 2021 Jan.
Artigo em Zh | MEDLINE | ID: mdl-34672469

RESUMO

Objective: Subjects used upper limb (arm dynamometer) and lower limb precision electromagnetic power meter (cycle ergometer) to perform symptom-restricted limit cardiopulmonary exercise testing (CPET). Then we analyzed the clinical value of arm ergometer CPET. Methods: The upper limb and lower limb precision electromagnetic power meters were used to complete the CPET in two different days for 6 normal people and 9 chronic patients. We analyzed CPET data, calculated related core indicators, and compared normal subjects and chronic patients to analyze the similarities and differences between upper and lower extremities and their correlations. Results: ①Compared with 9 patients with chronic diseases, there were significant differences in age ((33.2±12.7) vs (53.6±8.5) years) and diagnosis in 6 normal people. ②The Peak HR ((131.0±19.0) vs (153.0±22.0) bpm,P<0.05) of upper limb CPET of 15 subjects were lower than lower limb CPET, but the difference in blood pressure was not statistically significant (P>0.05). The Peak VT ((1.3±0.4) vs (1.8±0.4) L) and Peak VE ((51.4±21.1) vs (67.9±22.1) L/min) of lower limb CPET were significantly higher than that of upper limb (all P<0.05), and there was no significant difference in Peak BF When upper limb CPET was used, EX-time ((6.4±0.6) vs (8.5±1.2) min) was shorter than lower limb CPET; Peak Work Rate((73.2±19.6) vs (158.5±40.3) W/min), Peak VO2 ((1.1±0.4) vs (1.7±0.4) L/min), AT ((0.6±0.2) vs (0.9±0.2) L/min), Peak VO2/HR ((8.6±2.3) vs (10.9±2.6) ml/beat), OUEP (34.7±4.3 vs 39.8±5.3)were lower, and the Lowest VE/VCO2(32.6±3.8 vs 28.7±4.9), VE/VCO2 Slope (33.9±4.3 vs 28.3±6.2)were higher than those of lower limb CPET (all P<0.05). The comparison results of the two subgroups of normal and chronic patients were the same as the holistic comparison results. ③EX-time, Peak HR, Peak BF, Peak VT and Peak VE of upper limb CPET had good correlation with the results of lower limb CPET. Besides, the measured value and percentage of the projected value of Peak Work Rate, the measured value, kilogram weight value of Peak VO2 and AT, and percentage of the projected value of Peak VO2, the measured value of Peak VO2/HR also had good correlation. The measured value of OUEP, the measured value and percentage of the projected value of Lowest VE/VCO2 and VE/VCO2 Slope were also the same, when the other indicators had no significant correlation. Conclusion: As a supplement to lower limb CPET, upper limb CPET is highly feasible and safe for holistic functional status assessment. It provides an important supplement to guide the implementation of the holistic plan of individualized precision exercise, which is worthy of our further exploration.


Assuntos
Braço , Insuficiência Cardíaca , Fenômenos Eletromagnéticos , Exercício Físico , Humanos , Pessoa de Meia-Idade , Consumo de Oxigênio
15.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 113-119, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672147

RESUMO

Objective: To observe the effect of healthy volunteers different work rate increasing rate cardiopulmonary exercise test (CPET) on the peak exercise core indicators and the changes of respiratory exchange rate (RER) during exercise, to explore the effect of different work rate increasing rate on CPET peak exercise related indicators. Methods: Twelve healthy volunteers were randomly assigned to a moderate (30 W/min), a relatively low (10 W/min) and relatively high (60 W/min) three different work rate increasing rate CPET on different working days in a week. The main peak exercise core indicators of CPET data: VO2, VCO2, work rate (WR), breathe frequency(Bf), tidal volume (VT), ventilation (VE), heart rate (HR), blood pressure (BP), Oxygen pulse(O2P), exercise time and RER for each period of CPET were analyzed using standard methods. The ANOVA test and paired two-two comparison was performed on the difference of each index in the three groups of different work rate increasing rate. Results: Compared with the moderate work rate group, the peak work rate of the lower and higher work rate groups were relatively lower and higher, respectively ((162.04±41.59) W/min vs (132.92±34.55) W/min vs (197.42±46.14) W/min, P<0.01); exercise time was significantly prolonged and shortened ((5.69 ± 1.33) min vs (13.49 ± 3.43) min vs (3.56 ± 0.76) min, P<0.01); peak RER (1.27 ± 0.07 vs 1.18 ± 0.06 vs 1.33 ± 0.08, P<0.01~P<0.05) and the recovery RER maximum (1.72±0.16 vs 1.61±0.11 vs 1.81±0.14, P<0.01~P<0.05) were significantly decreased and increased. Conclusion: Different work rate increasing rate of CPET significantly change the Peak Work Rate, exercise time, Peak RER, and maximum RER during recovery. The CPET operator should choose an individualized work rate increasing rate that is appropriate for the subject, and also does not use a fixed RER value as a basis for ensuring safety, the subject's extreme exercise, and early termination of exercise.


Assuntos
Teste de Esforço , Insuficiência Cardíaca , Exercício Físico , Frequência Cardíaca , Humanos , Consumo de Oxigênio
16.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 120-124, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672148

RESUMO

Objective: To observe the effect of healthy volunteers different work rate increasing rate cardiopulmonary exercise testing (CPET) on the sub-peak parameters . Methods: Twelve healthy volunteers were randomly assigned to a moderate (30 W/min), a relatively low (10 W/min) and relatively high (60 W/min) three different work rate increasing rate CPET on different working days in a week. The core indicators related to CPET sub-peak exercise of 12 volunteers were compared according to standard Methods: anaerobic threshold (AT), oxygen uptake per unit power (ΔVO2/ΔWR), oxygen uptake eficiency plateau,(OUEP), the lowest average of 90 s of carbon dioxide ventilation equivalent (Lowest VE/ VCO2), the slope of carbon dioxide ventilation equivalent (VE/ VCO2 Slope) and intercept and anaerobic threshold oxygen uptake ventilation efficiency value (VO2/ VE@AT) and the anaerobic threshold carbon dioxide ventilation equivalent value (VE/ VCO2@AT). Paired t test was performed on the difference of each parameter in the three groups of different work rate increasing rate. Results: Compared with the relatively low and relatively high work rate increasing rate group, the moderate work rate increasing rate group uptake eficiency plateau, (42.22±4.76 vs 39.54±3.30 vs 39.29±4.29) and the lowest average of 90 s of carbon dioxide ventilation equivalent (24.13±2.88 vs 25.60±2.08 vs 26.06±3.05) was significantly better, and the difference was statistically significant (P<0.05); Compared with the moderate work rate increasing rate group, the oxygen uptake per unit work rate of the relatively low and relatively high work rate increasing rate group increased and decreased significantly ((8.45±0.66 vs 10.04±0.58 vs 7.16±0.60) ml/(min·kg)), difference of which was statistically significant (P<0.05); the anaerobic threshold did not change significantly ((0.87±0.19 vs 0.87±0.19 vs 0.89±0.19) L/min), the difference was not statistically significant (P>0.05). Conclusion: Relatively low and relatively high power increase rate can significantly change the CPET sub-peak sports related indicators such as the effectiveness of oxygen uptake ventilation, the effectiveness of carbon dioxide exhaust ventilation, and the oxygen uptake per unit work rate. Compared with the moderate work rate increasing rate CPET, the lower and higher work rate increasing rate significantly reduces the effectiveness of oxygen uptake ventilation and the effectiveness of carbon dioxide exhaust ventilation in healthy individuals. The standardized operation of CPET requires the selection of a work rate increasing rate suitable for the subject, so that the CPET sub-peak related indicators can best reflect the true functional state of the subject.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Limiar Anaeróbio , Humanos , Troca Gasosa Pulmonar , Ventilação Pulmonar
17.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 142-146, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672151

RESUMO

Objective: To screen the influencing factors of hypertensive heart disease (HHD), establish the predictive model of HHD, and provide early warning for the occurrence of HHD. Methods: Select the patients diagnosed as hypertensive heart disease or hypertensionfrom January 1, 2016 to December 31, 2019, in the medical data science academy of a medical school. Influencing factors were screened through single factor and multi-factor analysis, and R software was used to construct the logistics model, random forest (RF) model and extreme gradient boosting (XGBoost) model. Results: Univariate analysis screened 60 difference indicators, and multifactor analysis screened 18 difference indicators (P<0.05). The area under the curve (AUC) of Logistics model, RF model and XGBoost model are 0.979, 0.983 and 0.990, respectively. Conclusion: The results of the three HHD prediction models established in this paper are stable, and the XGBoost prediction model has a good diagnostic effect on the occurrence of HHD.


Assuntos
Cardiopatias , Aprendizado de Máquina , Biomarcadores , Humanos
18.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 154-161, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672153

RESUMO

Objective: Cardiopulmonary exercise testing (CPET) was used to investigate the exercise pathophysiology of mitral regurgitation. Methods: 26 patients with moderate and severe mitral regurgitation who completed standardized extreme exercise CPET under strict quality control after signing informed consent since 2016, and 11 normal subjects in the same period as the control group. The core indexes of CPET were analyzed and calculated according to the standard method and compared with normal subjects for intergroup statistical independent sample t-test. At the same time, the patients with heart failure and exercise oscillation breathing (OB) were divided into two subgroups: 11 cases without heart failure, 15 cases with heart failure, 8 cases with non-OB and 18 cases with OB, and their similarities and differences were compared between each subgroup. Results: The core indexes of CPET, such as peak oxygen uptake (85.60 ±9.06)%pred and anaerobic threshold (AT, (87.59 ±15.38)%pred) were normal. The peak oxygen uptake of CPET in patients with mitral regurgitation was (48.15 ±12.11)%pred, peak oxygen pulse was (66.57 ±12.20)%pred, AT was (56.75 ±11.50)%pred, oxygen uptake efficiency plateau was (88.24 ±16.42)%pred , lowest value of carbon dioxide ventilatory efficiency was (125.89 ±27.05)%pred and slope of carbon dioxide ventilatory efficiency was (128.31 ±31.68)%pred. Among them, only oxygen uptake efficiency plateau (OUEP) was normal and low, and the other indexes were significantly abnormal. There were significant differences between the patients and the control group (P<0.01). There was no significant difference between the non-OB group and the OB group, but there was significant difference between the non-OB group and the control group (P<0.05). There was no significant difference between the non-heart failure group and the heart failure group, but there was significant difference between the non-heart failure group and the control group. Conclusion: All the core indexes of cardiopulmonary exercise are significantly abnormal in patients with mitral regurgitation who are significantly lower than those in normal subjects except for the low effectiveness of oxygen ventilation. And with or without heart failure and OB did not affect the cardiopulmonary function.


Assuntos
Insuficiência da Valva Mitral , Exercício Físico , Teste de Esforço , Humanos , Consumo de Oxigênio , Relatório de Pesquisa
19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 162-168, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672154

RESUMO

Objective: The cardiopulmonary function of patients with chronic heart failure (CHF) was severely limited, but the holistic integrative exercise pathophysiology is still unclear. Methods: After signed the consent form, Eighty three patients with severe CHF from October 2016 to October 2017 in Fuwai Hospital were performed Ramp incremental loading program CardioPulmonary Exercise Testing (CPET), and 12 normal subjects served as control. CPET were performed according to standard of Harbor-UCLA MC and the circulatory, respiratory and metabolic parameters during CPET were measured and analyzed. Results: Peak oxygen uptake (Peak VO2) in CHF (14.33±2.69) ml/(min·kg), (44.25±14.74)%pred was significantly lower than control ((29.42±5.46) ml/(min·kg), (83.88±6.28)%pred). Other core parameters of CPET such as anaerobic threshold (AT), peak oxygen pulse, oxygen uptake efficiency platform (OUEP), the lowest of carbon dioxide output ventilation ratio (Lowest VE/VCO2), and carbon dioxide output ventilation slope (VE/VCO2 Slope) in CHF were significantly different with the control group(P<0.01). The core parameters of lung function, such as forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC, and carbon monoxide diffusion (DLCO) were significantly decreased (P<0.01). Systolic blood pressure during all stages of CPET in CHF was significantly lower than control group (P<0.05); Heart rate at AT, peak and recovery stages were significantly lower than control (P<0.01). Minute ventilation, tidal volume and respiratory frequency at rest, warm-up were significantly higher than control (P<0.05). Tidal volume at recovery was significantly higher than control (P<0.05). VO2 at AT, peak and recovery stages in CHF were significantly higher than control (P<0.01). Oxygen pulse at AT and peak were significantly higher than control (P<0.01). Pulse oxygen saturation during all stages of CPET in CHF were significantly lower than control (P<0.01). Conclusion: The decreased holistic functional capacity of cardiogenic CHF dominantly due to circulatory limitation, and secondly due to respiratory and metabolic limitation.


Assuntos
Exercício Físico , Insuficiência Cardíaca , Limiar Anaeróbio , Teste de Esforço , Humanos , Consumo de Oxigênio
20.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 177-188, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34672156

RESUMO

Objective: To observe and study the resting radial artery pulse wave and changes after a single individualized exercise in patients with long-term chronic diseases. Methods: We selected 16 patients with chronic disease (disease duration ≥5 years) who have been clearly diagnosed as hypertension and/or diabetes and/or hyperlipemia, and first completed the symptom-restricted limit cardiopulmonary exercise testing (CPET). Then a single individualized exercise with Δ50% power as the exercise intensity was completed within one week after CPET. We measured and recorded 50s pulse wave data before exercise and 10 min, 20 min, 30 min after exercise, then obtained each pulse wave characteristic point: starting point (B), main wave peak point (P1), trough of a repulse point (PL), crest of a repulse point (P2), and end point (E). The raw data of the abscissa (time T) and ordinate (amplitude Y) corresponding to each point were derived from the instrument. We treated the end point E of the previous pulse wave as the start point B of the next wave, returned TB to zero, and got the main observation indicators: YB, YP1, YPL, YP2 and TP1, TPL, TP2, TE, and calculated out ΔYP1, ΔYPL, ΔYP2, TE-TPL, (TE-TPL)/TPL, pulse rate, S1, S2 ,ΔYP2-ΔYPL and TP2-TPL as secondary observation indicators. Then calculated the occurrence rate of dicrotic wave with obvious crest. Finally we analyzed individually the 50 s pulse wave data of each patient before and after exercise, and then averaged all the data for overall analysis. Results: ①16 patients with long-term chronic diseases (males 14, females 2), ages (53.7±12.6, 28~80) years old, height (171.7±6.6, 155~183) cm, body weight (80.0±13.5, 54~98) kg. 2YB (91.5±10.8, 71.1~108.6), YP1 (203.6±24.7, 162.7~236.3), YPL (127.1±6.2, 118.2~140.3), YP2 (125.9±6.2, 115.7~137.7), TP1 ( 137.2±22.3, 103.0~197.1), TPL (368.7±29.5, 316.3~434.0), TP2 (422.7±32.8, 376.9~494.7), TE (883.4±95.0, 672.2~1003.3), ΔYP1 (112.1±33.8, 60.3~ 157.5), ΔYPL (35.5±14.2, 17.5~66.2), ΔYP2 (34.4±13.3, 20.0~62.9), TE-TPL (514.6±85.4, 341.4~621.9), (TE-TPL)/TPL (1.4±0.2, 1.0~1.7), pulse rate (68.8±8.4, 59.8~89.3), S1 (0.9±0.3, 0.4~1.4), S2 (0.0±0.0, -0.1~0.0), ΔYP2-ΔYPL (-1.2±2.6,- 6.5 ~ 2.5), TP2-TPL (54.0 ± 10.8, 33.6 ~ 81.1). ③10min after exercise, YB, YPL, YP2, TPL, TE decreased, YP1 increased. ΔYPL, TE-TPL, (TE-TPL)/TPL decreased, and ΔYP1, pulse rate, S1, ΔYP2-ΔYPL, TP2 -TPL increased (all P<0.05). The change trend of pulse wave at 20min and 30min after exercise was consistent with that at 10min after exercise, but most indicators gradually recovered to the resting level before exercise from 10 min. ④The appearance rate of dicrotic wave with obvious crest in 16 patients with long-term chronic disease at rest was 28.6%, and the appearance rate of 10 min (65.7%), 20 min (77.1%), 30 min (73.7%) after exercise was significantly increased (all P< 0.01). In 6 patients, the incidence of dicrotic waves with obvious peaks after exercise was significantly increased, and it could continue until 30 minutes. In 3 patients, the incidence increased significantly 10 minutes after exercise, and began to decrease at 20 minutes. In 1 patient, the rate of appearance only started to increase 20 minutes after exercise. In 2 patients, the incidence increased 10 minutes after exercise and then decreased. In 1 patient, the rate of occurrence increased briefly 20 minutes after exercise and then decreased. The incidence of 1 patient dropped after exercise and began to rise at 20 minutes. In 2 cases, the incidence rate did not increase after exercise, and it increased slightly after 30 minutes. Conclusion: In patients with long-term chronic diseases, the radial artery pulse wave is short and the dicrotic wave is not obvious or even disappears. After a single precise power exercise, the main wave increases, the position of the dicrotic wave decreases, and the amplitude increases. The specific response should be analyzed individually.


Assuntos
Teste de Esforço , Exercício Físico , Idoso de 80 Anos ou mais , Pressão Sanguínea , Doença Crônica , Feminino , Frequência Cardíaca , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA