Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335339

RESUMO

Garcinia biflavonoid 1 (GB1) is one of the active chemical components of Garcinia kola and is reported to be capable of reducing the intracellular lipid deposition, which is the most significant characteristic of non-alcoholic fatty liver disease. However, its bioactive mechanism remains elusive. In the current study, the lipid deposition was induced in HepG2 cells by exposure to oleic acid and palmitic acid (OA&PA), then the effect of GB1 on lipid metabolism and oxidative stress and the role of regulating PPARα in these cells was investigated. We found that GB1 could ameliorate the lipid deposition by reducing triglycerides (TGs) and upregulate the expression of PPARα and SIRT6, suppressing the cell apoptosis by reducing the oxidative stress and the inflammatory factors of ROS, IL10, and TNFα. The mechanism study showed that GB1 had bioactivity in a PPARα-dependent manner based on its failing to improve the lipid deposition and oxidative stress in PPARα-deficient cells. The result revealed that GB1 had significant bioactivity on improving the lipid metabolism, and its potential primary action mechanism suggested that GB1 could be a potential candidate for management of non-alcoholic fatty liver disease.


Assuntos
Biflavonoides , PPAR alfa , Biflavonoides/farmacologia , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , PPAR alfa/genética
2.
Sci Rep ; 5: 9113, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766083

RESUMO

We propose a new approach to control the amplitude and phase distributions of electromagnetic fields over the aperture of a horn antenna. By loading a metamaterial lens inside the horn antenna, a tapered amplitude distribution of the aperture field is achieved, which can suppress the side-lobe radiations of the antenna. The metamaterial is further manipulated to achieve a flat phase distribution on the horn aperture to avoid the gain reduction that usually suffers in the conventional low-sidelobe antenna designs. A prototype of the metamaterial-loaded horn antenna is designed and fabricated. Both numerical simulations and measured results demonstrate the tapered aperture-field distribution and significant reduction of side-lobe and back-lobe radiations in the operating frequency band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA