RESUMO
Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells. TBBPA bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA mono(2-hydroxyethyl ether) (TBBPA-MHEE), TBBPA bis(glycidyl ether) (TBBPA-BGE), and TBBPA mono(glycidyl ether) (TBBPA-MGE) were found to induce adipogenesis in 3T3-L1 preadipocytes to different extends, as evidenced by the upregulated intracellular lipid generation and expressions of adipogenesis-related biomarkers. TBBPA-BHEE exhibited a stronger obesogenic effect than did TBBPA. In contrast, the test chemicals had a weak impact on the differentiation process of C3H10T1/2 MSCs to brown adipocytes. As for hepatic lipid formation test, only TBBPA mono(allyl ether) (TBBPA-MAE) was found to significantly promote triglyceride (TG) accumulation in HepG2 cells, and the effective exposure concentration of the chemical under oleic acid (OA) co-exposure was lower than that without OA co-exposure. Collectively, TBBPA analogues may perturb lipid metabolism in multiple tissues, which varies with the test tissues. The findings highlight the potential health risks of this kind of emerging chemicals in inducing obesity, non-alcoholic fatty liver disease (NAFLD) and other lipid metabolism disorders, especially under the conditions in conjunction with high-fat diets.
Assuntos
Células 3T3-L1 , Adipogenia , Retardadores de Chama , Metabolismo dos Lipídeos , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Camundongos , Adipogenia/efeitos dos fármacos , Humanos , Retardadores de Chama/toxicidade , Células Hep G2 , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismoRESUMO
3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the most commonly used antioxidants in foodstuffs, has been identified as an environmental endocrine disruptor (EED) with obesogenic activity. Given the increasing concern on EED-caused dysfunction in lipid metabolism, whether 3-BHA could influence the development of brown adipocytes is worthy of being explored. In this study, the effect of 3-BHA on the differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) into brown adipocytes was investigated. Exposure to 3-BHA promoted lipogenesis of the differentiated cells, as evidenced by the increased intracellular lipid accumulation and elevated expressions of adipogenic biomarkers, including peroxisome proliferator-activated receptor γ (PPARγ), Perilipin, Adiponectin, and fatty acid binding protein 4 (FABP4). Surprisingly, the thermogenic capacity of the differentiated cells was compromised as a result of 3-BHA exposure, because neither intracellular mitochondrial contents nor expressions of thermogenic biomarkers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), cell-death-inducing DNA fragmentation factor α subunit-like effector A (CIDEA), and PR domain containing 16 (PRDM16), were increased by this chemical. The underlying molecular mechanism exploration revealed that, in contrast to p38 MAPK, 3-BHA stimulation induced phosphorylation of Smad1/5/8 in an exposure time-dependent manner, suggesting that this chemical-triggered Smad signaling was responsible for the shift of C3H10T1/2 MSC differentiation from a brown to white-like phenotype. The finding herein, for the first time, revealed the perturbation of 3-BHA in the development of brown adipocytes, uncovering new knowledge about the obesogenic potential of this emerging chemical of concern.
RESUMO
The widespread usage of 3-tert-butyl-4-hydroxyanisole (3-BHA) as an anthropogenic antioxidant has caused considerable environmental contamination and frequent detection in diverse human-derived samples. 3-BHA can promote adipogenesis and impair hepatic lipid metabolism, while its effects on renal lipid homeostasis remain to be uncertain. Herein, using the human kidney 2 (HK-2) cell experiments, 3-BHA was found to cause a significant reduction in lipid accumulation of the HK-2 cells in both exposure concentration- and duration-dependent manners. Exposure to 3-BHA lowered the transcriptional expressions of sterol regulatory element-binding protein 1 (SREBP1) and acetyl-CoA carboxylase (ACC), as well as ACC activity, indicating the inhibition in the process of de novo lipogenesis in HK-2 cells. On this basis, the mechanism study suggested that the reduced glucose absorption and accelerated glycolysis were concomitantly involved. The antagonism of 3-BHA on the transactivation of androgen receptor (AR) contributed to the lowered de novo lipogenesis and the consequent intracellular lipid reduction. The metabolomics data further confirmed the imbalance of lipid homeostasis and dysregulation of de novo lipogenesis. The new findings on the impaired renal lipid metabolism induced by 3-BHA warranted proper care about the usage of this chemical as a food additive.
Assuntos
Metabolismo dos Lipídeos , Lipogênese , Humanos , Receptores Androgênicos/genética , LipídeosRESUMO
3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the widely used food antioxidants, has been found to act as a potential obesogen by promoting adipogenesis in vitro and inducing white adipose tissue development in vivo. Whether 3-BHA-induced visceral obesity was accompanied by a disruption of hepatic lipid homeostasis in mammals remained unclear. In this study, we evaluated the effect of 3-BHA on the development of nonalcoholic fatty liver disease (NAFLD) in male C57BL/6J mice. After 18 weeks of oral administration of 10 mg/kg 3-BHA, the mice fed with a high-fat diet (HFD) had higher hepatic triglyceride concentrations (0.32 mg/mg protein) and severer steatosis (1.57 for the NAFLD score) than the control ones. The in vivo hepatic lipid deposition disturbed by 3-BHA was transcriptionally regulated by the genes involved in lipid uptake, de novo lipogenesis, fatty acid oxidation, and lipid export. The in vitro studies further confirmed that 24 h of exposure to 50 µM 3-BHA could induce intracellular oleic acid (OA) uptake and triglyceride accumulation (1.5-fold of the OA control) in HepG2 cells. Lipidomic analysis indicated the perturbation of 3-BHA in the levels of 30 lipid species related to sphingolipids, glycerophospholipids, and glycerolipids under HFD conditions. The findings herein first revealed the disruption effect of 3-BHA on hepatic lipid homeostasis, thus exacerbating the development of HFD-induced NAFLD.
Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Animais , Hidroxianisol Butilado , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Triglicerídeos/metabolismo , Triglicerídeos/farmacologiaRESUMO
The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 â¼ 200 µM), ethyl paraben (20 â¼ 100 µM), propyl paraben (5 â¼ 20 µM), and butyl paraben (BuP, 2 â¼ 10 µM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.
Assuntos
Parabenos , Glândula Tireoide , Animais , Simulação de Acoplamento Molecular , Parabenos/análise , Conservantes Farmacêuticos/toxicidade , Glândula Tireoide/metabolismo , Peixe-Zebra/metabolismoRESUMO
Bromophenols (BPs) have both natural and artificial sources in the environment and are frequently detected in plants. Herein, the ubiquitous 2,4,6-TriBP was hydroponically exposed to rice seedlings at two concentrations (0.2 and 2.0 mg/L) to characterize the dose-dependent abiotic stress responses of rice plants to BPs. The 2,4,6-TriBP induced oxidative damage to rice roots and subsequently inhibited plant transpiration and growth at the end of exposure in both concentrations. Moreover, the gene expression of OsUGT72B1 and the activity of glycosyltransferases of exposed rice roots were 2.36-to-4.41-fold and 1.23-to-1.72-fold higher than that of the blank controls after 24 h, following the formation of glycoconjugates in response to 2,4,6-TriBP exposure. It was notable that the glycosylation rates also showed a dose-effect relationship in rice roots. One and six glycoconjugates of 2,4,6-TriBP were detected in 0.2 and 2.0 mg/L exposure groups, respectively. Considering the detected species of glycoconjugates for four other types of BPs, the numbers of bromine atoms were found to dramatically affect their glycosylation process in rice plants. These results improve our fundamental understanding of the impact of congener structures and exposure concentrations of organic contaminants on the glycosylation process in response to phytotoxicity.
Assuntos
Oryza , Oryza/química , Plântula/metabolismo , Raízes de Plantas/metabolismo , Estresse OxidativoRESUMO
The plasma consists of multiple functional serine zymogens, such as plasma kallikrein-kinin system (KKS), which are vulnerable to exogenous chemical exposure, and may closely relate to the deleterious effects. Testing whether the anthropogenic chemicals could increase the kallikrein-like activity in plasma or not would be of great help to understand their potentials in triggering the cascade activation of the plasma zymogens and explain the corresponding hematotoxicity. In this study, a novel high-throughput ex vivo assay was established to screen the abilities of emerging chemicals like per- and polyfluoroalkyl substances (PFASs) in inducing kallikrein-like activities on basis of using rat plasma as the protease zymogen source. Upon the optimization of the conditions in the test system, the assay gave sensitive fluorescent response to the stimulation of the positive control, dextran sulfate, and the dose-response showed a typical S-shaped curve with EC50 of 0.24 mg/L. The intra-plate and inter-plate relative standard deviations (RSDs) were less than 10% in the quantitative range of dextran sulfate, indicating a good reliability and repeatability of this newly-established assay. Using this method, several alternatives or congeners of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), including 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), Ag-PFOA, K-PFOA, Na-PFOA and ammonium pentadecafluorooctanoate (APFO), were further screened, and their capabilities in inducing kallikrein-like activities were identified. The ex vivo assay newly-developed in the present study would be promising in high-throughput screening of the hematological effects of emerging chemicals of concern.
RESUMO
We report a joint experimental and theoretical study on the reactions of cobalt clusters (Con±/0) with nitrogen using the customized reflection time-of-flight mass spectrometer combined with a 177.3 nm deep-ultraviolet laser. Comparing to the behaviors of neutral Con (n = 2-30) and anionic Con- clusters (n = 7-53) which are relatively inert in reacting with nitrogen in the fast-flow tube, Con+ clusters readily react with nitrogen resulting in adducts of one or multiple N2 except Co6+ which stands firm in the reaction with nitrogen. Detailed quantum chemistry calculations, including the energetics, electron occupancy, and orbital analysis, well-explained the reasonable reactivity of Con+ clusters with nitrogen and unveiled the open-shell superatomic stability of Co6+ within a highly symmetric (D3d) structure. The D3d Co6+ bears an electron configuration of a half-filled superatomic 1P orbital (i.e., 1S21P3||1D0), a large α-highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, symmetric multicenter bonds, and reasonable electron delocalization pertaining to metallic aromaticity. Topology analysis by atom-in-molecule illustrates the interactions between Con+ and N2 corresponding to covalent bonds, but the Co-N interactions in cationic Co2+N2 and Co6+N2 clusters are apparently weaker than those in the other systems. In addition, we identify a superatomic complex Co5N6+ which exhibits similar frontier orbitals as the naked Co5+ cluster, but the alpha HOMO-LUMO gap is nearly double-magnified, which is consistent with the high-abundance peak of Co5N6+ in the experimental observation. The enhanced stability of such a ligand-coordinated superatomic complex Co5N6+, along with the superatom Co6+ with aromaticity, sheds light on special and general superatoms.
RESUMO
BACKGROUND: Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological processes, and the epidemiological study has indicated a positive association between PM exposure and the increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation of megakaryocytes upon PM treatment. RESULTS: The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS) process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle size, but independent of sampling filters. CONCLUSION: The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.
Assuntos
Megacariócitos , Material Particulado/toxicidade , Trombopoese , Plaquetas , Fosforilação OxidativaRESUMO
Tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, is reported to potentially possess risks in inducing obesity or obesity-related metabolic diseases. Considering the increasing environmental contamination of TBBPA analogues and their high structural similarities to the parent compound, whether they could influence adipogenesis or not remains to be elucidated. In this study, two of the most prevalent TBBPA derivatives [i.e., TBBPA bis(allyl ether) (TBBPA-BAE) and TBBPA bis(2,3-dibromopropyl ether) (TBBPA-BDBPE)] and their byproducts [i.e., TBBPA mono(allyl ether) (TBBPA-MAE) and TBBPA mono(2,3-dibromopropyl ether) (TBBPA-MDBPE)], together with TBBPA, were screened for their capacities in activating peroxisome proliferator-activated receptor-γ (PPARγ) and glucocorticoid receptor (GR), the key nuclear receptors involved in adipogenesis, and their structure-related effects on differentiation of 3T3-L1 preadipocytes were explored. The results indicated that the binding affinities of TBBPA and its analogues for the PPARγ ligand-binding domain (PPARγ-LBD) and GR, as well as their effects on PPARγ transactivation, followed the order of TBBPA > TBBPA-MAE > TBBPA-MDBPE > TBBPA-BAE, TBBPA-BDBPE. Nevertheless, TBBPA-MAE and TBBPA-MDBPE showed higher potentials in promoting adipogenesis in 3T3-L1 cells than did TBBPA, as evidenced by intracellular triglyceride contents and adipogenic biomarkers at both protein and transcriptional levels. The etherified group at position 4 of TBBPA phenolic rings was crucial in chemical-induced adipogenic effects, which was related with the recruitment of PPARγ and GR-mediated networks and some other unidentified signaling pathways. The findings on the disturbance of TBBPA analogues on adipogenesis revealed their potential risk in causing obesity and other lipid metabolism-related human health concerns.
Assuntos
Retardadores de Chama , Bifenil Polibromatos , Células 3T3-L1 , Adipogenia , Animais , Humanos , Camundongos , PPAR gamaRESUMO
A customized reflection time-of-flight (Re-TOF) mass spectrometer combined with a 177 nm deep-ultraviolet laser has enabled us to observe well-resolved cobalt clusters Con±/0 and perform a comprehensive study of their reactivity with ammonia (NH3). The anions Con- are found to be inert, the neutrals allow the adsorption of multiple NH3 molecules, while the cationic Con+ clusters readily react with NH3 giving rise to dehydrogenation. However, incidental dehydrogenation of NH3 on Con+ is only observed for n ≥ 3. The dramatic charge- and size-dependent reactivities of Con±/0 clusters with NH3 are studied by the density functional theory (DFT)-calculation results of energetics, density of states, orbital interactions, and reaction dynamics. We illustrate the dehydrogenation from two NH3 molecules, where a significantly reduced transition-state energy barrier is found pertaining to the dimolecular co-catalysis effect. The reactivity of Co3+ with NH3 is illustrated showing effective catalysis for N-H dissociation to produce hydrogen applicable for designing ammonia fuel cells.
RESUMO
Particulate air pollution caused by human activities has drawn global attention due to its potential health risks. Considering the inevitable contact of inhaled airborne fine particulate matter (PM) with plasma, the hematological effects of PM are worthy of study. In this study, the potential effect of PM on hematological homeostasis through triggering the crosstalk of the kallikrein-kinin system (KKS), complement, and coagulation systems in plasma was investigated. The ex vivo, in vitro, and in vivo KKS activation assays confirmed that PM samples could efficiently cause the cascade activation of key zymogens in the KKS, wherein the particles coupled with lipopolysaccharide attachment provided substantial contribution. The binding of Hageman factor XII (FXII) with PM samples and its subsequent autoactivation initiated this process. The crucial elements in the complement cascade, including complement 3 (C3) and complement 5 (C5), and coagulation system (prothrombin) were also found to be actively induced by PM exposure, which was regulated by the interplay of KKS activation. The data provided solid evidence on hematological effects of airborne PM through inducing the activation of the KKS, complement, and coagulation systems, which would be valuable in the risk assessment on air-pollution-related cardiovascular diseases.
Assuntos
Calicreínas , Cininas , Coagulação Sanguínea , Fator XII , Humanos , Sistema Calicreína-CininaRESUMO
Synthetic phenolic antioxidants (SPAs) are closely correlated with human life due to their extensive usages, and increasing concerns have been raised on their biosafety. The previous controversial findings caused continuous debates on their potential endocrine disrupting effects. In the present study, four commonly used SPAs, including butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl hydroquinone (TBHQ) and 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (AO2246), were investigated for their estrogenic effects, and the results from in vitro screening assays showed SPAs themselves had negligible estrogen receptor binding affinities. Nevertheless, significant increase in E2 secretion was observed in H295R cells treated with SPAs, especially for BHA. The transcriptional levels of steroidogenic enzymes, including StAR, 3ßHSD, CYP11B1, and CYP11B2 were up-regulated via the mediation of protein kinase A (PKA) signaling pathway. In vivo experiment confirmed that waterborne exposure to BHA disturbed E2 and testosterone (T) levels in zebrafish gonad, thus causing potential estrogenic effects through the regulation of hypothalamic-pituitary-gonadal-liver axis (HPGL-axis). Accordingly, this study has provided new insights for SPA-induced endocrine disrupting effects. Considering the allowable maximum level of individual BHA or in combination with TBHQ and BHT in foodstuffs (200 mg kg-1), the perturbation in steroidogenesis observed for relatively low concentrations of SPAs would need more public attention.
Assuntos
Antioxidantes , Hidroxitolueno Butilado , Animais , Hidroxianisol Butilado , Humanos , Fenóis , Peixe-ZebraRESUMO
Tetrabromobisphenol A (TBBPA) and its derivatives are now being highly concerned due to their emerging environmental occurrence and deleterious effects on non-target organisms. Considering the potential neurotoxicity of TBBPA derivatives which has been demonstrated in vitro, what could happen in vivo is worthy of being studied. Tetrabromobisphenol A bis(2-hydroxyethyl ether) (TBBPA-BHEE), a representative TBBPA derivative, was selected for a 21-day exposure experiment on neonatal Sprague Dawley (SD) rats through intranasal administration. The neurobehavioral, histopathological changes, and differentially expressed genes based on RNA microarray were investigated to evaluate the neurological effects of this chemical. The results indicated that TBBPA-BHEE exposure significantly compromised the motor co-ordination performance and the locomotor activities (p<0.05). The neurobehavioral phenotype could be attributed to the obvious histopathological changes in both cerebrum and cerebellum, such as neural cell swelling, microglial activation and proliferation. A total of 911 genes were up-regulated, whereas 433 genes were down-regulated. Gene set enrichment analysis showed multiple signaling pathways, including ubiquitin-mediated proteolysis and wingless-int (Wnt) signaling pathway etc. were involved due to TBBPA-BHEE exposure. The gene ontology enrichment analysis showed the basic cellular function and the neurological processes like synaptic transmission were influenced. The toxicological effects of TBBPA-BHEE observed in this study suggested the potential neuronal threaten from unintended exposure, which would be of great value in the biosafety evaluation of TBBPA derivatives.
Assuntos
Comportamento Animal/efeitos dos fármacos , Retardadores de Chama/toxicidade , Bifenil Polibromatos/toxicidade , Administração Intranasal , Animais , Ratos , Ratos Sprague-Dawley , Testes de ToxicidadeRESUMO
Measuring the conductivity changes of sensing materials to detect a wide range of radiation energy and dosage is one of the major sensing mechanisms of radiation sensors. Carbon nanotube (CNT) filled composites are suitable for sensing radiation because of the extraordinary electrical properties of CNTs and the CNT-network formed inside the polymer matrix. Although the use of CNT-based nanocomposites as potential radiation sensing materials has been widely studied, there is still a lack of theoretical models to analyze the relationship between electrical conductivity and radiation dosages. In this article, we propose a 3D model to describe the electrical conductivity of CNT-based nanocomposites when being irradiated by ionizing radiation. The Monte Carlo method has been employed to calculate radiation intensity, CNT concentration and alignment's influence on the electrical conductivity. Our simulation shows a better agreement when CNT loading is between the percolation threshold and 3% volume fraction. Radiation experiments have been performed to verify the reliability of our model to illustrate a power function relationship between the electrical conductivity of a CNT-filled polymer and radiation intensity. In addition, the predicted alignment to obtain the best sensitivity for radiation sensing has been discussed to help with CNT-network building in the fabrication process.
RESUMO
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Assuntos
Agricultura , Resistência Microbiana a Medicamentos , Agricultura/métodos , Resistência Microbiana a Medicamentos/genética , Inteligência Artificial , Antibacterianos , Transferência Genética Horizontal , Farmacorresistência Bacteriana/genética , Águas Residuárias/microbiologia , AnimaisRESUMO
In this paper, the electrothermal coupling model of metal oxide resistive random access memory (RRAM) is analyzed by using a 2D axisymmetrical structure in COMSOL Multiphysics simulation software. The RRAM structure is a Ti/HfO2/ZrO2/Pt bilayer structure, and the SET and RESET processes of Ti/HfO2/ZrO2/Pt are verified and analyzed. It is found that the width and thickness of CF1 (the conductive filament of the HfO2 layer), CF2 (the conductive filament of the ZrO2 layer), and resistive dielectric layers affect the electrical performance of the device. Under the condition of the width ratio of conductive filament to transition layer (6:14) and the thickness ratio of HfO2 to ZrO2 (7.5:7.5), Ti/HfO2/ZrO2/Pt has stable high and low resistance states. On this basis, the comparison of three commonly used RRAM metal top electrode materials (Ti, Pt, and Al) shows that the resistance switching ratio of the Ti electrode is the highest at about 11.67. Finally, combining the optimal conductive filament size and the optimal top electrode material, the I-V hysteresis loop was obtained, and the switching ratio Roff/Ron = 10.46 was calculated. Therefore, in this paper, a perfect RRAM model is established, the resistance mechanism is explained and analyzed, and the optimal geometrical size and electrode material for the hysteresis characteristics of the Ti/HfO2/ZrO2/Pt structure are found.
RESUMO
Epidemiological data show that obesity is now a pandemic. Lipid homeostasis requires the coordination of multiple tissues and organs, including the liver, kidney, cardiovascular system, and adipose tissues, to maintain bodily homeostasis. As increasing amounts of chemicals are being synthesized, applied, and released into the environment, their obesogenic effects have triggered serious concern. Currently, more than 50 types of chemicals with high human exposure levels have been identified as environmental obesogens that can interfere with lipid metabolism and induce obesity. Experimental studies have shown that the lipid metabolism interference effects of obesogens have multiple targets, including nuclear receptors, transcription factors, cytokines, and hormones. The interfering factors of environmental obesogen-induced obesity include transgenerational effects, susceptibility windows, gender differences, structure-effect relationships, and diet habits. Various research approaches have been established to conduct obesogenic effect research. This comprehensive review summarizes the mechanisms underlying obesogen actions and the research progress on obesogen-disrupted lipid metabolism, along with the influencing factors and research approaches, aiming to provide a framework for understanding the effects of environmental obesogens on lipid metabolism.