Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nature ; 438(7071): 1132-4, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16372003

RESUMO

The light from historical supernovae could in principle still be visible as scattered-light echoes centuries after the explosion. The detection of light echoes could allow us to pinpoint the supernova event both in position and age and, most importantly, permit the acquisition of spectra to determine the 'type' of the supernova centuries after the direct light from the explosion first reached Earth. Although echoes have been discovered around some nearby extragalactic supernovae, targeted searches have not found any echoes in the regions of historical Galactic supernovae. Here we report three faint variable-surface-brightness complexes with high apparent proper motions pointing back to three of the six smallest (and probably youngest) previously catalogued supernova remnants in the Large Magellanic Cloud, which are believed to have been thermonuclear (type Ia) supernovae. Using the distance and apparent proper motions of these echo arcs, we estimate ages of 610 and 410 years for two of them.

2.
Nature ; 424(6949): 651-4, 2003 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12904786

RESUMO

Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.


Assuntos
Astronomia , Meio Ambiente Extraterreno/química , Hidrogênio/análise , Fenômenos Astronômicos , Evolução Química , Gases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA