RESUMO
Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines â¼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.
Assuntos
Apicomplexa/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Parasita , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Células Cultivadas , Claudinas/genética , Claudinas/metabolismo , Fibroblastos/parasitologia , Genoma de Protozoário/genética , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/fisiopatologia , Plasmodium falciparum/genética , Toxoplasmose/parasitologia , Toxoplasmose/fisiopatologiaRESUMO
The first-generation COVID-19 vaccines have been effective in mitigating severe illness and hospitalization, but recurring waves of infections are associated with the emergence of SARS-CoV-2 variants that display progressive abilities to evade antibodies, leading to diminished vaccine effectiveness. The lack of clarity on the extent to which vaccine-elicited mucosal or systemic memory T cells protect against such antibody-evasive SARS-CoV-2 variants remains a critical knowledge gap in our quest for broadly protective vaccines. Using adjuvanted spike proteinbased vaccines that elicit potent T cell responses, we assessed whether systemic or lung-resident CD4 and CD8 T cells protected against SARS-CoV-2 variants in the presence or absence of virus-neutralizing antibodies. We found that 1) mucosal or parenteral immunization led to effective viral control and protected against lung pathology with or without neutralizing antibodies, 2) protection afforded by mucosal memory CD8 T cells was largely redundant in the presence of antibodies that effectively neutralized the challenge virus, and 3) "unhelped" mucosal memory CD8 T cells provided no protection against the homologous SARS-CoV-2 without CD4 T cells and neutralizing antibodies. Significantly, however, in the absence of detectable virus-neutralizing antibodies, systemic or lung-resident memory CD4 and "helped" CD8 T cells provided effective protection against the relatively antibody-resistant B1.351 (ß) variant, without lung immunopathology. Thus, induction of systemic and mucosal memory T cells directed against conserved epitopes might be an effective strategy to protect against SARS-CoV-2 variants that evade neutralizing antibodies. Mechanistic insights from this work have significant implications in the development of T celltargeted immunomodulation or broadly protective SARS-CoV-2 vaccines.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Linfócitos Intraepiteliais , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Evasão da Resposta Imune , Linfócitos Intraepiteliais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Phosphine fumigation is essential for controlling storage pests like Tribolium castaneum, but its frequent application has resulted in resistance, primarily due to mutations in the Dihydrolipoamide dehydrogenase (DLD) gene associated with the rph2 allele. This study demonstrates that the Patiala population exhibits homozygous resistance variations across populations, contrasting with the susceptibility observed in laboratory cultures. Our assessment of mitochondrial DLD and Cytochrome c oxidase (COX) activities showed significantly elevated levels in the Patiala population, with increases of approximately sevenfold for DLD and 6.92-fold for COX, indicating mitochondrial adaptations for enhanced energy production. Kinetic analyses of DLD in the resistant Patiala population showed a higher Vmax (0.005 mmol/min) and a significantly increased Km (16.66 mM), indicating variations in maximal enzyme activity and substrate affinity. Furthermore, resistant T. castaneum populations displayed substantial upregulation of DLD and COX gene expression, with DLD expression increasing by 10.53-fold and COX expression peaking at 102.57-fold in Patiala. Pearson correlation analysis indicated strong positive correlations (r > 0.8) between enzymatic activity and gene expression for both DLD and COX, suggesting a coordinated role in resistance mechanisms. The PCA biplot illustrated distribution patterns of enzymatic activity and gene expression among field-resistant populations, highlighting the association between increased resistance and elevated enzymatic activity and gene expression levels. Therefore, the upregulation of DLD and COX activities in resistant populations underscores their critical roles in counteracting phosphine, reflecting metabolic reprogramming for improved energy production under stress.
Assuntos
Di-Hidrolipoamida Desidrogenase , Resistência a Inseticidas , Inseticidas , Fosfinas , Tribolium , Animais , Tribolium/genética , Tribolium/enzimologia , Tribolium/metabolismo , Fosfinas/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Adaptação Fisiológica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismoRESUMO
There is a critical need for adjuvants that can safely elicit potent and durable T cell-based immunity to intracellular pathogens. Here, we report that parenteral vaccination with a carbomer-based adjuvant, Adjuplex (ADJ), stimulated robust CD8 T-cell responses to subunit antigens and afforded effective immunity against respiratory challenge with a virus and a systemic intracellular bacterial infection. Studies to understand the metabolic and molecular basis for ADJ's effect on antigen cross-presentation by dendritic cells (DCs) revealed several unique and distinctive mechanisms. ADJ-stimulated DCs produced IL-1ß and IL-18, suggestive of inflammasome activation, but in vivo activation of CD8 T cells was unaffected in caspase 1-deficient mice. Cross-presentation induced by TLR agonists requires a critical switch to anabolic metabolism, but ADJ enhanced cross presentation without this metabolic switch in DCs. Instead, ADJ induced in DCs, an unique metabolic state, typified by dampened oxidative phosphorylation and basal levels of glycolysis. In the absence of increased glycolytic flux, ADJ modulated multiple steps in the cytosolic pathway of cross-presentation by enabling accumulation of degraded antigen, reducing endosomal acidity and promoting antigen localization to early endosomes. Further, by increasing ROS production and lipid peroxidation, ADJ promoted antigen escape from endosomes to the cytosol for degradation by proteasomes into peptides for MHC I loading by TAP-dependent pathways. Furthermore, we found that induction of lipid bodies (LBs) and alterations in LB composition mediated by ADJ were also critical for DC cross-presentation. Collectively, our model challenges the prevailing metabolic paradigm by suggesting that DCs can perform effective DC cross-presentation, independent of glycolysis to induce robust T cell-dependent protective immunity to intracellular pathogens. These findings have strong implications in the rational development of safe and effective immune adjuvants to potentiate robust T-cell based immunity.
Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resinas Acrílicas/química , Adjuvantes Imunológicos/farmacologia , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , NADPH Oxidase 2/fisiologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
BACKGROUND: Tribolium castaneum causes substantial damage to stored grains, leading to economic losses. The present study evaluates phosphine resistance in adult and larval stages of T. castaneum from north and northeast India, where continuous and long-term phosphine use in large-scale storage conditions intensifies resistance, posing risks to grain quality, safety, and industry profitability. METHODS AND RESULTS: This study utilized T. castaneum bioassays and CAPS markers restriction digestion methodology to assess resistance. The phenotypic results indicated a lower LC50 value in larvae compared to adults, while the resistance ratio remained consistent across both stages. Similarly, the genotypic analysis revealed comparable resistance levels regardless of the developmental stage. We categorized the freshly collected populations based on resistance ratios, with Shillong showing weak resistance, Delhi and Sonipat displaying moderate resistance, and Karnal, Hapur, Moga, and Patiala exhibiting strong resistance to phosphine. Further validation by accessing findings and exploring the relationship between phenotypic and genotypic variations using Principal Component Analysis (PCA). This comprehensive study enhances our understanding of T. castaneum resistance levels, providing valuable insights for the development of targeted pest management strategies. CONCLUSION: This study provides insights into the current phenotypic and genotypic resistance levels of T. castaneum in North and North East India. Understanding this is crucial for developing effective pest management strategies and future research on biological and physiological aspects of phosphine resistance in insects, enabling the formulation of effective management practices. Addressing phosphine resistance is vital for sustainable pest management and the long-term viability of the agricultural and food industries.
Assuntos
Inseticidas , Tribolium , Animais , Tribolium/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Larva/genética , ÍndiaRESUMO
The spotted stem borer, Chilo partellus (Lepidoptera: Crambidae) is the major insect pest of maize and sorghum crops during the rainy season. The pheromone released by adult virgin females has been reported to consist of (Z)-11-hexadecenal (Z11-16:Ald) as major component and (Z)-11-hexadecenol (Z11-16OH) as minor component. The latter has been reported to reduce the efficiency of major component to trap the male moths. We studied the electrophysiological and behavioral response of male C. partellus moths to Z11-16:Ald, Z11-16OH, their E-isomers (E)-11-hexadecenal and (E)-11-hexadecen-1-ol, and blends. Electroantennogram (EAG) studies revealed that male C. partellus antennae elicited significantly greater responses to both (Z)-11-hexadecenal and (Z)-11-hexadecenol compared to their respective E-isomers. Behavioral response studies through wind tunnel and cage bioassay showed that blends of Z11-16:Ald and Z11-16OH in the proportion of 100:100 and 100:95 elicited significantly higher responses from male moths. The attractiveness of these pheromone components and blends in field also revealed that traps baited with 100:100 proportion was most effective. Our studies clearly showed that the minor alcohol component Z11-16OH is important for enhancing attractiveness of the pheromone and provides a more effective blend for monitoring of this pest.
Assuntos
Mariposas , Atrativos Sexuais , Masculino , Animais , Feminino , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia , Mariposas/fisiologia , Aldeídos/farmacologia , Feromônios/farmacologiaRESUMO
Intraoperative rupture (IOR) of an intracranial aneurysm is a serious complication, often with catastrophic consequences that are difficult to manage even by the best hands. Like most surgical complications, this one is better to avoid than to treat, but any vascular neurosurgeon should know how to deal with IOR of an aneurysm, because it is bound to occur. The aims of this study were to evaluate the incidence and factors associated with IOR during clipping of intracranial aneurysms, to analyze strategies for controlling hemorrhage in such cases, and to assess outcomes. Overall, 911 cases of intracranial aneurysms, which were treated surgically by the author during 26 years of his professional career, were reviewed. IOR was never noted during clipping of an unruptured intracranial aneurysm (65 cases) but was encountered in 49 of 846 cases (5.8%) presenting with subarachnoid hemorrhage. This complication occurred most often in cases of internal carotid artery aneurysms (22 cases; 45%), followed by anterior communicating artery aneurysms (12 cases; 24%), distal anterior cerebral artery aneurysms (6 cases; 12%), middle cerebral artery aneurysms (6 cases; 12%), and posterior circulation aneurysms (3 cases; 6%). IOR was mostly encountered during early surgery (within 3 days) after the ictus (26 cases; 53%) and most frequently occurred during dissection of the aneurysm (26 cases; 53%). Overall, 22 patients (45%) had good outcome, 18 (37%) had variable morbidity, and 9 (18%) died. Fatal consequences of IOR were noted only in cases of big or multilobulated internal carotid artery aneurysms. Detailed planning of the surgical procedure, application of meticulous microdissection techniques, and anticipation of possible intraoperative incidents during intervention aimed at clipping of an intracranial aneurysm can reduce the risk of IOR, as well as the associated morbidity and mortality.
Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Aneurisma Intracraniano/complicações , Aneurisma Roto/cirurgia , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/etiologia , Procedimentos Neurocirúrgicos/métodos , Microcirurgia , Resultado do Tratamento , Estudos RetrospectivosRESUMO
The application of biocontrol agents in farm operations for pest control programs is gaining priority and preference globally. Effective delivery, infectivity of the biocontrol agents, and quality shelf-life products containing these bioagents are vital parameters responsible for the success of biopesticides under field conditions. In the present study, moisture-retaining bio-insecticidal dustable powder formulation (SaP) of Steinernema abbasi (Sa) infective juveniles (IJs) was developed and assessed for its shelf life, physicochemical profile, and bio-efficacy against subterranean termite under field conditions. Formulation exhibited free-flowing character, with pH of 6.50-7.50, and apparent density in the range 0.50-0.70 g cm-3. The bioefficacy study for two rabi seasons (2020-2021, and 2021-2022) in wheat and chickpea grown in an experimental farm heavily infested with subterranean termites (Odontotermes obesus) revealed a significant reduction in plant damage due to pest attack in formulation-treated plots, monitored in terms of relative number of infested tillers in wheat and infested plants in chickpea fields. The reduced damage to the crop caused by termite was reflected in the relative differences in the growth and yield attributes as well. The study establishes the potential of the developed product as a biopesticide suitable for organic farming and integrated pest management operations.
Assuntos
Cicer , Isópteros , Animais , Triticum , Pós , Controle Biológico de Vetores , Agentes de Controle BiológicoRESUMO
Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas , Memória Imunológica , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores CCR2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/farmacologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/prevenção & controle , Receptores CCR2/genéticaRESUMO
Malaria parasites activate a broad-selectivity ion channel on their host erythrocyte membrane to obtain essential nutrients from the bloodstream. This conserved channel, known as the plasmodial surface anion channel (PSAC), has been linked to parasite clag3 genes in P. falciparum, but epigenetic switching between the two copies of this gene hinders clear understanding of how the encoded protein determines PSAC activity. Here, we used linkage analysis in a P. falciparum cross where one parent carries a single clag3 gene to overcome the effects of switching and confirm a primary role of the clag3 product with high confidence. Despite Mendelian inheritance, CLAG3 conditional knockdown revealed remarkably preserved nutrient and solute uptake. Even more surprisingly, transport remained sensitive to a CLAG3 isoform-specific inhibitor despite quantitative knockdown, indicating that low doses of the CLAG3 transgene are sufficient to confer block. We then produced a complete CLAG3 knockout line and found it exhibits an incomplete loss of transport activity, in contrast to rhoph2 and rhoph3, two PSAC-associated genes that cannot be disrupted because nutrient uptake is abolished in their absence. Although the CLAG3 knockout did not incur a fitness cost under standard nutrient-rich culture conditions, this parasite could not be propagated in a modified medium that more closely resembles human plasma. These studies implicate oligomerization of CLAG paralogs encoded by various chromosomes in channel formation. They also reveal that CLAG3 is dispensable under standard in vitro conditions but required for propagation under physiological conditions.
Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Canais Iônicos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transporte Biológico , Cruzamentos Genéticos , Eritrócitos/metabolismo , Canais Iônicos/metabolismo , Malária Falciparum/metabolismo , Nutrientes/metabolismo , Avaliação Nutricional , Fenótipo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismoRESUMO
Optimal CD8 T cell immunity is orchestrated by signaling events initiated by TCR recognition of peptide Ag in concert with signals from molecules such as CD28 and 4-1BB. The molecular mechanisms underlying the temporal and spatial signaling dynamics in CD8 T cells remain incompletely understood. In this study, we show that stimulation of naive CD8 T cells with agonistic CD3 and CD28 Abs, mimicking TCR and costimulatory signals, coordinately induces 4-1BB and cRel to enable elevated cytosolic cRel:IκBα complex formation and subsequent 4-1BB-induced IκBα degradation, sustained cRel activation, heightened IL-2 production and T cell expansion. NfkbiaNES/NES CD8 T cells harboring a mutated IκBα nuclear export sequence abnormally accumulate inactive cRel:IκBα complexes in the nucleus following stimulation with agonistic anti-CD3 and anti-CD28 Abs, rendering them resistant to 4-1BB induced signaling and a disrupted chain of events necessary for efficient T cell expansion. Consequently, CD8 T cells in NfkbiaNES/NES mice poorly expand during viral infection, and this can be overcome by exogenous IL-2 administration. Consistent with cell-based data, adoptive transfer experiments demonstrated that the antiviral CD8 T cell defect in NfkbiaNES/NES mice was cell intrinsic. Thus, these results reveal that IκBα, via its unique nuclear export function, enables, rather than inhibits 4-1BB-induced cRel activation and IL-2 production to facilitate optimal CD8 T cell immunity.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-2/metabolismo , Mutação/genética , Inibidor de NF-kappaB alfa/genética , Proteínas Oncogênicas v-rel/metabolismo , Transporte Ativo do Núcleo Celular , Transferência Adotiva , Animais , Anticorpos Monoclonais/metabolismo , Antígenos CD28/imunologia , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidor de NF-kappaB alfa/metabolismo , Proteínas Oncogênicas v-rel/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismoRESUMO
In agro-areas, linuron (LNR) and amino-triazole (ATZ) are the widely used herbicides to protect crops, but their widespread use pollutes the environment, especially when these are mixed with water or soil. In efforts to address these environmental issues and to detect trace quantities of the herbicides, a graphitic carbon nitride (g-C3N4) with cetyltrimethylammonium bromide (CTAB) modified carbon paste electrode (g-C3N4-CTAB/CPE) was developed and used for the detection of LNR and ATZ. Materials were characterized by XRD, TEM and AFM techniques. The effect of pH on electro-oxidation (under optimized conditions) showed the maximum peak current at pH of 4.2 for AMT and pH 6.0 for LNR. The electro-kinetic and thermodynamic parameters of LNR and ATZ were determined. Additional experiments were performed for the trace level detection of ATZ and LNR using the square wave voltammetric technique. Concentrations were varied linearly in the range of 3.0 × 10-7 M to 4.5 × 10-5 M for ATZ with a detection limit of 6.41 × 10-8 M, and 1.2 × 10-7 M to 3.0 × 10-4 M for LNR with a detection limit of 2.47 × 10-8 M. The developed novel sensor was effective for trace level detection of LNR and ATZ in water and soil samples.
Assuntos
Herbicidas , Linurona , Carbono , Cetrimônio , Eletrodos , Grafite , Compostos de Nitrogênio , TriazóisRESUMO
Spontaneous pneumothorax leading to pneumomediastinum, pneumopericardium and surgical emphysema is a benign condition. Progression to the development of epidural pneumatosis is rare. We report a 19-year-old man who presented with dyspnoea and swelling of the chest wall following a bout of cough. Bilateral subcutaneous emphysema was palpated on the anterior chest wall from the sternum to the midaxillary regions. His chest X-ray revealed subcutaneous emphysema and pneumopericardium. His computed tomography of the thorax to rule out life-threatening conditions revealed bilateral subcutaneous emphysema, pneumomediastinum, pneumo-pericardium and pneumothorax. He was transferred to the intensive care unit. An intercostal drainage tube was inserted in the left pleural cavity. The patient was followed up with repeat chest X-rays. The patient's symptom got relieved and was discharged after day 9. Diagnosis of pneumomedia-stinum may not be as lamentable as it is seen. Close cardio-pulmonary monitoring is mandatory for complications and accompanying conditions. Most patients with uncomplicated spontaneous pneumomediastinum respond well to oxygen and conservative management. In this case, the patient's symptoms and severe tachypnoea prompted the insertion of an intercostal drainage tube.
Assuntos
Enfisema Mediastínico , Pneumopericárdio , Pneumotórax , Enfisema Subcutâneo , Adulto , Humanos , Masculino , Enfisema Mediastínico/diagnóstico por imagem , Enfisema Mediastínico/etiologia , Enfisema Mediastínico/terapia , Pneumopericárdio/diagnóstico por imagem , Pneumopericárdio/etiologia , Pneumopericárdio/terapia , Pneumotórax/diagnóstico por imagem , Pneumotórax/etiologia , Pneumotórax/terapia , Complicações Pós-Operatórias , Radiografia , Enfisema Subcutâneo/diagnóstico por imagem , Enfisema Subcutâneo/etiologia , Enfisema Subcutâneo/terapia , Adulto JovemRESUMO
A novel drug to treat SARS-CoV-2 infections and hydroxyl chloroquine analogue, (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine (BCMTP) compound has been synthesized in one pot reaction. The novel compound BCMTP has been characterized by FT-IR, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction patterns. Crystal packing is stabilized by C8-H8Aâ¢â¢â¢Cl10i, C41-H41â¢â¢â¢Cl1ii and N1-H1Aâ¢â¢â¢Cl6iii intermolecular hydrogen bonds. From the geometrical parameters, it is observed that the piperidine ring adopts chair conformation. Hirshfeld surface analysis was carried out to quantify the interactions and an interaction energy analysis was done to study the interactions between pairs of molecules. The geometrical structure was optimized by density functional theory (DFT) method at B3LYP/6-31G (d, p) as the basic set. The smaller binding energy value provides the higher reactivity of BCMTP compound than hydroxyl chloroquine and was corrected by high electrophilic and low nucleophilic reactions. The stability and charge delocalization of the molecule were also considered by natural bond orbital (NBO) analysis. The HOMO-LUMO energies describe the charge transfer which takes place within the molecule. Molecular electrostatic potential has also been analysed. Molecular docking studies are implemented to analyse the binding energy of the BCMTP compound against standard drugs such as the crystal structure of ADP ribose phosphatase of NSP3 from SARS-CoV-2 in complex with MES and SARS-CoV-2 main protease with an unliganded active site (2019-nCoV, corona virus disease 2019, COVID-19) and found to be considered having better antiviral agents. Molecular dynamics simulation was performed for COVID-19 main protease (Mpro: 6WCF/6Y84) to understand the elements governing the inhibitory effect and the stability of interaction under dynamic conditions.
RESUMO
The development of T cell-based subunit protein vaccines against diseases such as tuberculosis and malaria remains a challenge for immunologists. Here, we have identified a nanoemulsion adjuvant, Adjuplex (ADJ), which enhanced dendritic cell (DC) cross-presentation and elicited effective memory T cell-based immunity to Listeria monocytogenes. We further evaluated whether cross-presentation induced by ADJ can be combined with the immunomodulatory effects of Toll-like receptor (TLR) agonists (CpG or glucopyranosyl lipid adjuvant [GLA]) to evoke systemic CD8 T cell-based immunity to L. monocytogenes. Mechanistically, vaccination with ADJ, alone or in combination with CpG or GLA, augmented activation and antigen uptake by CD103+ migratory and CD8α+ resident DCs and upregulated CD69 expression on B and T lymphocytes in vaccine-draining lymph nodes. By engaging basic leucine zipper ATF-like transcription factor 3-dependent cross-presenting DCs, ADJ potently elicited effector CD8 T cells that differentiated into granzyme B-expressing CD27LO effector-like memory CD8 T cells, which provided effective immunity to L. monocytogenes in the spleen and liver. CpG or GLA alone did not elicit effector-like memory CD8 T cells and induced moderate protection in the spleen but not in the liver. Surprisingly, combining CpG or GLA with ADJ reduced the number of ADJ-induced memory CD8 T cells and compromised protective immunity to L. monocytogenes, especially in the liver. Taken together, the data presented in this study provide a glimpse of protective CD8 T cell memory differentiation induced by a nanoemulsion adjuvant and demonstrate the unexpected negative effects of TLR signaling on the magnitude of CD8 T cell memory and protective immunity to L. monocytogenes, a model intracellular pathogen.
Assuntos
Adjuvantes Imunológicos , Linfócitos T CD8-Positivos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Listeria/imunologia , Listeriose/imunologia , Listeriose/microbiologia , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Imunomodulação , Imunofenotipagem , Listeriose/metabolismo , Transdução de SinaisRESUMO
Infectious bronchitis (IB) caused by infectious bronchitis virus (IBV) is currently a major threat to chicken health, with multiple outbreaks being reported in the United States over the past decade. Modified live virus (MLV) vaccines used in the field can persist and provide the genetic material needed for recombination and emergence of novel IBV serotypes. Inactivated and subunit vaccines overcome some of the limitations of MLV with no risk of virulence reversion and emergence of new virulent serotypes. However, these vaccines are weakly immunogenic and poorly protective. There is an urgent need to develop more effective vaccines that can elicit a robust, long-lasting immune response. In this study, we evaluate a novel adjuvant system developed from Quil-A and chitosan (QAC) for the intranasal delivery of nucleic acid immunogens to improve protective efficacy. The QAC adjuvant system forms nanocarriers (<100 nm) that efficiently encapsulate nucleic acid cargo, exhibit sustained release of payload, and can stably transfect cells. Encapsulation of plasmid DNA vaccine expressing IBV nucleocapsid (N) protein by the QAC adjuvant system (pQAC-N) enhanced immunogenicity, as evidenced by robust induction of adaptive humoral and cellular immune responses postvaccination and postchallenge. Birds immunized with pQAC-N showed reduced clinical severity and viral shedding postchallenge on par with protection observed with current commercial vaccines without the associated safety concerns. Presented results indicate that the QAC adjuvant system can offer a safer alternative to the use of live vaccines against avian and other emerging coronaviruses.IMPORTANCE According to 2017 U.S. agriculture statistics, the combined value of production and sales from broilers, eggs, turkeys, and chicks was $42.8 billion. Of this number, broiler sales comprised 67% of the industry value, with the production of >50 billion pounds of chicken meat. The economic success of the poultry industry in the United States hinges on the extensive use of vaccines to control infectious bronchitis virus (IBV) and other poultry pathogens. The majority of vaccines currently licensed for poultry health include both modified live vaccine and inactivated pathogens. Despite their proven efficacy, modified live vaccine constructs take time to produce and could revert to virulence, which limits their safety. The significance of our research stems from the development of a safer and potent alternative mucosal vaccine to replace live vaccines against IBV and other emerging coronaviruses.
Assuntos
Bronquite/prevenção & controle , Infecções por Coronavirus/veterinária , Gammacoronavirus/imunologia , Mucosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Bronquite/virologia , Galinhas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Imunidade Celular , Imunização , Vírus da Bronquite Infecciosa/imunologia , Nucleocapsídeo/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/imunologia , Vacinas de DNA/imunologia , Carga ViralRESUMO
Fungal infections in CD4+ T cell immunocompromised patients have risen sharply in recent years. Although vaccines offer a rational avenue to prevent infections, there are no licensed fungal vaccines available. Inactivated vaccines are safer but less efficacious and require adjuvants that may undesirably bias toward poor protective immune responses. We hypothesized that reducing the TCR signaling threshold could potentiate antifungal CD8+ T cell responses and immunity to inactivated vaccine in the absence of CD4+ T cells. In this study, we show that CBLB, a negative regulator of TCR signaling, suppresses CD8+ T cells in response to inactivated fungal vaccination in a mouse model of CD4+ T cell lymphopenia. Conversely, Cblb deficiency enhanced both the type 1 (e.g., IFN-γ) and type 17 (IL-17A) CD8+ T cell responses to inactivated fungal vaccines and augmented vaccine immunity to lethal fungal pneumonia. Furthermore, we show that immunization with live or inactivated vaccine yeast did not cause detectable pathologic condition in Cblb-/- mice. Augmented CD8+ T cell responses in the absence of CBLB also did not lead to terminal differentiation or adversely affect the expression of transcription factors T-bet, Eomes, and RORγt. Additionally, our adoptive transfer experiments showed that CBLB impedes the effector CD8+ T cell responses in a cell-intrinsic manner. Finally, we showed that ablation of Cblb overcomes the requirement of HIF-1α for expansion of CD8+ T cells upon vaccination. Thus, adjuvants that target CBLB may augment inactivated vaccines and immunity against systemic fungal infections in vulnerable patients.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Fúngicas/imunologia , Imunidade Celular , Pneumopatias Fúngicas/imunologia , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-cbl/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos T CD8-Positivos/patologia , Vacinas Fúngicas/farmacologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Pneumopatias Fúngicas/genética , Pneumopatias Fúngicas/patologia , Pneumopatias Fúngicas/prevenção & controle , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Proteínas Proto-Oncogênicas c-cbl/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologiaRESUMO
Heme is ubiquitous, yet relatively little is known about the maintenance of labile pools of this cofactor, which likely ensures its timely bioavailability for proper cellular function. Quantitative analysis of labile heme is of fundamental importance to understanding how nature preserves access to the diverse chemistry heme enables, while minimizing cellular damage caused by its redox activity. Here, we have developed and characterized a protein-based sensor that undergoes fluorescence quenching upon heme binding. By genetically encoding this sensor in the human malarial parasite, Plasmodium falciparum, we have quantified cytosolic labile heme levels in intact, blood-stage parasites. Our findings indicate that a labile heme pool (â¼1.6 µM) is stably maintained throughout parasite development within red blood cells, even during a period coincident with extensive hemoglobin degradation by the parasite. We also find that the heme-binding antimalarial drug chloroquine specifically increases labile cytosolic heme, indicative of dysregulation of this homeostatic pool that may be a relevant component of the antimalarial activity of this compound class. We propose that use of this technology under various environmental perturbations in P. falciparum can yield quantitative insights into fundamental heme biology.
Assuntos
Técnicas Biossensoriais , Heme/metabolismo , Plasmodium/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Expressão Gênica , Genes Reporter , Heme/química , Heme/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Plasmodium/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Virus infections induce CD8+ T cell responses comprised of a large population of terminal effector cells and a smaller subset of long-lived memory cells. The transcription factors regulating the relative expansion versus the long-term survival potential of anti-viral CD8+ T cells are not completely understood. We identified ZBTB32 as a transcription factor that is transiently expressed in effector CD8+ T cells. After acute virus infection, CD8+ T cells deficient in ZBTB32 showed enhanced virus-specific CD8+ T cell responses, and generated increased numbers of virus-specific memory cells; in contrast, persistent expression of ZBTB32 suppressed memory cell formation. The dysregulation of CD8+ T cell responses in the absence of ZBTB32 was catastrophic, as Zbtb32-/- mice succumbed to a systemic viral infection and showed evidence of severe lung pathology. We found that ZBTB32 and Blimp-1 were co-expressed following CD8+ T cell activation, bound to each other, and cooperatively regulated Blimp-1 target genes Eomes and Cd27. These findings demonstrate that ZBTB32 is a key transcription factor in CD8+ effector T cells that is required for the balanced regulation of effector versus memory responses to infection.
Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Proteínas Repressoras/imunologia , Transferência Adotiva , Animais , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Citometria de Fluxo , Ativação Linfocitária/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase , Proteínas Repressoras/biossínteseRESUMO
We report the use of prism-assisted side-coupling to investigate the spatio-temporal dynamics of photoionization in an Ar-filled hollow-core photonic crystal fiber. By launching four different LP core modes we are able to probe temporal and spatial changes in the modal refractive index on timescales from a few hundred picoseconds to several hundred microseconds after the ionization event. We experimentally analyze the underlying gas density waves and find good agreement with quantitative and qualitative hydrodynamic predictions. Moreover, we observe periodic modulations in the MHz-range lasting for a few microseconds, indicating nanometer-scale vibrations of the fiber structure, driven by gas density waves.