Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37994784

RESUMO

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Assuntos
Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Sequência de Bases , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos
2.
Plant Cell ; 34(5): 1844-1862, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35146519

RESUMO

Legumes have adaptive mechanisms that regulate nodulation in response to the amount of nitrogen in the soil. In Lotus japonicus, two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP4 and LjNLP1, play pivotal roles in the negative regulation of nodulation by controlling the expression of symbiotic genes in high nitrate conditions. Despite an improved understanding of the molecular basis for regulating nodulation, how nitrate plays a role in the signaling pathway to negatively regulate this process is largely unknown. Here, we show that nitrate transport via NITRATE TRANSPORTER 2.1 (LjNRT2.1) is a key step in the NLP signaling pathway to control nodulation. A mutation in the LjNRT2.1 gene attenuates the nitrate-induced control of nodulation. LjNLP1 is necessary and sufficient to induce LjNRT2.1 expression, thereby regulating nitrate uptake/transport. Our data suggest that LjNRT2.1-mediated nitrate uptake/transport is required for LjNLP4 nuclear localization and induction/repression of symbiotic genes. We further show that LjNIN, a positive regulator of nodulation, counteracts the LjNLP1-dependent induction of LjNRT2.1 expression, which is linked to a reduction in nitrate uptake. These findings suggest a plant strategy in which nitrogen acquisition switches from obtaining nitrogen from the soil to symbiotic nitrogen fixation.


Assuntos
Lotus , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Solo , Simbiose/fisiologia
3.
Plant Cell ; 33(7): 2340-2359, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33826745

RESUMO

Leguminous plants produce nodules for nitrogen fixation; however, nodule production incurs an energy cost. Therefore, as an adaptive strategy, leguminous plants halt root nodule development when sufficient amounts of nitrogen nutrients, such as nitrate, are present in the environment. Although legume NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors have recently been identified, understanding how nodulation is controlled by nitrate, a fundamental question for nitrate-mediated transcriptional regulation of symbiotic genes, remains elusive. Here, we show that two Lotus japonicus NLPs, NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1)/LjNLP4 and NRSYM2/LjNLP1, have overlapping functions in the nitrate-induced control of nodulation and act as master regulators for nitrate-dependent gene expression. We further identify candidate target genes of LjNLP4 by combining transcriptome analysis with a DNA affinity purification-seq approach. We then demonstrate that LjNLP4 and LjNIN, a key nodulation-specific regulator and paralog of LjNLP4, have different DNA-binding specificities. Moreover, LjNLP4-LjNIN dimerization underlies LjNLP4-mediated bifunctional transcriptional regulation. These data provide a basic principle for how nitrate controls nodulation through positive and negative regulation of symbiotic genes.


Assuntos
Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nodulação/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Simbiose/fisiologia , Fatores de Transcrição/genética
4.
Breed Sci ; 73(1): 70-75, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37168810

RESUMO

During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.

5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675076

RESUMO

Drought stress is a severe environmental issue that threatens agriculture at a large scale. PHYTOCHROMES (PHYs) are important photoreceptors in plants that control plant growth and development and are involved in plant stress response. The aim of this study was to identify the role of PHYs in the tomato cv. 'Moneymaker' under drought conditions. The tomato genome contains five PHYs, among which mutant lines in tomato PHYA and PHYB (B1 and B2) were used. Compared to the WT, phyA and phyB1B2 mutants exhibited drought tolerance and showed inhibition of electrolyte leakage and malondialdehyde accumulation, indicating decreased membrane damage in the leaves. Both phy mutants also inhibited oxidative damage by enhancing the expression of reactive oxygen species (ROS) scavenger genes, inhibiting hydrogen peroxide (H2O2) accumulation, and enhancing the percentage of antioxidant activities via DPPH test. Moreover, expression levels of several aquaporins were significantly higher in phyA and phyB1B2, and the relative water content (RWC) in leaves was higher than the RWC in the WT under drought stress, suggesting the enhancement of hydration status in the phy mutants. Therefore, inhibition of oxidative damage in phyA and phyB1B2 mutants may mitigate the harmful effects of drought by preventing membrane damage and conserving the plant hydrostatus.


Assuntos
Fitocromo , Solanum lycopersicum , Fitocromo A/genética , Fitocromo A/metabolismo , Solanum lycopersicum/genética , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Fitocromo/metabolismo , Mutação , Regulação da Expressão Gênica de Plantas , Fitocromo B/genética , Fitocromo B/metabolismo
7.
PLoS Genet ; 15(1): e1007865, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605473

RESUMO

Nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) form symbioses with plant roots and these are established by precise regulation of symbiont accommodation within host plant cells. In model legumes such as Lotus japonicus and Medicago truncatula, rhizobia enter into roots through an intracellular invasion system that depends on the formation of a root-hair infection thread (IT). While IT-mediated intracellular rhizobia invasion is thought to be the most evolutionarily derived invasion system, some studies have indicated that a basal intercellular invasion system can replace it when some nodulation-related factors are genetically modified. In addition, intracellular rhizobia accommodation is suggested to have a similar mechanism as AMF accommodation. Nevertheless, our understanding of the underlying genetic mechanisms is incomplete. Here we identify a L. japonicus nodulation-deficient mutant, with a mutation in the LACK OF SYMBIONT ACCOMMODATION (LAN) gene, in which root-hair IT formation is strongly reduced, but intercellular rhizobial invasion eventually results in functional nodule formation. LjLAN encodes a protein that is homologous to Arabidopsis MEDIATOR 2/29/32 possibly acting as a subunit of a Mediator complex, a multiprotein complex required for gene transcription. We also show that LjLAN acts in parallel with a signaling pathway including LjCYCLOPS. In addition, the lan mutation drastically reduces the colonization levels of AMF. Taken together, our data provide a new factor that has a common role in symbiont accommodation process during root nodule and AM symbiosis.


Assuntos
Lotus/genética , Medicago truncatula/genética , Micorrizas/crescimento & desenvolvimento , Simbiose/genética , Regulação da Expressão Gênica de Plantas/genética , Lotus/crescimento & desenvolvimento , Lotus/microbiologia , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Mutação , Micorrizas/genética , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163602

RESUMO

Heat stress (HS) is a prevalent negative factor affecting plant growth and development, as it is predominant worldwide and threatens agriculture on a large scale. PHYTOCHROMES (PHYs) are photoreceptors that control plant growth and development, and the stress signaling response partially interferes with their activity. PHYA, B1, and B2 are the most well-known PHY types in tomatoes. Our study aimed to identify the role of tomato 'Money Maker' phyA and phyB1B2 mutants in stable and fluctuating high temperatures at different growth stages. In the seed germination and vegetative growth stages, the phy mutants were HS tolerant, while during the flowering stage the phy mutants revealed two opposing roles depending on the HS exposure period. The response of the phy mutants to HS during the fruiting stage showed similarity to WT. The most obvious stage that demonstrated phy mutants' tolerance was the vegetative growth stage, in which a high degree of membrane stability and enhanced water preservation were achieved by the regulation of stomatal closure. In addition, both mutants upregulated the expression of heat-responsive genes related to heat tolerance. In addition to lower malondialdehyde accumulation, the phyA mutant enhanced proline levels. These results clarified the response of tomato phyA and phyB1B2 mutants to HS.


Assuntos
Resposta ao Choque Térmico , Mutação , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Fitocromo A/genética , Fitocromo B/genética
9.
Semin Cell Dev Biol ; 83: 115-122, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28993253

RESUMO

Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química
10.
Mol Plant Microbe Interact ; 33(2): 320-327, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880983

RESUMO

Legumes survive in nitrogen-limited soil by forming a symbiosis with rhizobial bacteria. During root nodule symbiosis, legumes strictly control the development of their symbiotic organs, the nodules, in a process known as autoregulation of nodulation (AON). The study of hypernodulation mutants has elucidated the molecular basis of AON. Some hypernodulation mutants show an increase in rhizobial infection in addition to developmental alteration. However, the relationship between the AON and the regulation of rhizobial infection has not been clarified. We previously isolated daphne, a nodule inception (nin) allelic mutant, in Lotus japonicus. This mutant displayed dramatically increased rhizobial infection, suggesting the existence of NIN-mediated negative regulation of rhizobial infection. Here, we investigated whether the previously isolated components of AON, especially CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and their putative receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1), were able to suppress increased infection in the daphne mutant. The constitutive expression of LjCLE-RS1/2 strongly reduced the infection in the daphne mutant in a HAR1-dependent manner. Moreover, reciprocal grafting analysis showed that strong reduction of infection in daphne rootstock constitutively expressing LjCLE-RS1 was canceled by a scion of the har1 or klavier mutant, the genes responsible for encoding putative LjCLE-RS1 receptors. These data indicate that rhizobial infection is also systemically regulated by CLE-HAR1 signaling, a component of AON. In addition, the constitutive expression of NIN in daphne har1 double-mutant roots only partially reduced the rhizobial infection. Our findings indicate that the previously identified NIN-mediated negative regulation of infection involves unknown local signaling, as well as CLE-HAR1 long-distance signaling.


Assuntos
Lotus , Proteínas de Plantas , Rhizobium , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Humanos , Lotus/genética , Lotus/microbiologia , Proteínas de Plantas/fisiologia , Nodulação , Nódulos Radiculares de Plantas
11.
J Exp Bot ; 70(2): 507-517, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351431

RESUMO

Legumes can survive in nitrogen-deficient environments by forming root-nodule symbioses with rhizobial bacteria; however, forming nodules consumes energy, and nodule numbers must thus be strictly controlled. Previous studies identified major negative regulators of nodulation in Lotus japonicus, including the small peptides CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and CLE-RS3, and their putative major receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1). CLE-RS2 is known to be expressed in rhizobia-inoculated roots, and is predicted to be post-translationally arabinosylated, a modification essential for its activity. Moreover, all three CLE-RSs suppress nodulation in a HAR1-dependent manner. Here, we identified PLENTY as a gene responsible for the previously isolated hypernodulation mutant plenty. PLENTY encoded a hydroxyproline O-arabinosyltransferase orthologous to ROOT DETERMINED NODULATION1 in Medicago truncatula. PLENTY was localized to the Golgi, and an in vitro analysis of the recombinant protein demonstrated its arabinosylation activity, indicating that CLE-RS1/2/3 may be substrates for PLENTY. The constitutive expression experiments showed that CLE-RS3 was the major candidate substrate for PLENTY, suggesting the substrate preference of PLENTY for individual CLE-RS peptides. Furthermore, a genetic analysis of the plenty har1 double mutant indicated the existence of another PLENTY-dependent and HAR1-independent pathway negatively regulating nodulation.


Assuntos
Lotus/enzimologia , Pentosiltransferases/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Complexo de Golgi/enzimologia , Lotus/genética , Lotus/microbiologia , Mesorhizobium/fisiologia , Pentosiltransferases/genética , Fenótipo , Simbiose
12.
Plant Cell Physiol ; 59(9): 1733-1738, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860446

RESUMO

Root nodule symbiosis is one of the best characterized mutualistic relationships of plant-microbe symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organ root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we provide an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.


Assuntos
Fabaceae/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Simbiose/fisiologia , Fabaceae/microbiologia , Rhizobium/fisiologia
13.
Development ; 141(12): 2441-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850853

RESUMO

Many leguminous plants have a unique ability to reset and alter the fate of differentiated root cortical cells to form new organs of nitrogen-fixing root nodules during legume-Rhizobium symbiosis. Recent genetic studies on the role of cytokinin signaling reveal that activation of cytokinin signaling is crucial to the nodule organogenesis process. However, the genetic mechanism underlying the initiation of nodule organogenesis is poorly understood due to the low number of genes that have been identified. Here, we have identified a novel nodulation-deficient mutant named vagrant infection thread 1 (vag1) after suppressor mutant screening of spontaneous nodule formation 2, a cytokinin receptor gain-of-function mutant in Lotus japonicus. The VAG1 gene encodes a protein that is putatively orthologous to Arabidopsis ROOT HAIRLESS 1/HYPOCOTYL 7, a component of the plant DNA topoisomerase VI that is involved in the control of endoreduplication. Nodule phenotype of the vag1 mutant shows that VAG1 is required for the ploidy-dependent cell growth of rhizobial-infected cells. Furthermore, VAG1 mediates the onset of endoreduplication in cortical cells during early nodule development, which may be essential for the initiation of cortical cell proliferation that leads to nodule primordium formation. In addition, cortical infection is severely impaired in the vag1 mutants, whereas the epidermal infection threads formation is normal. This suggests that the VAG1-mediated endoreduplication of cortical cells may be required for the guidance of symbiotic bacteria to host meristematic cells.


Assuntos
Proteínas Arqueais/fisiologia , DNA Topoisomerases Tipo II/fisiologia , Endorreduplicação/fisiologia , Regulação da Expressão Gênica de Plantas , Lotus/embriologia , Lotus/fisiologia , Proteínas Quinases/fisiologia , Proteínas Arqueais/genética , Bactérias , Linhagem da Célula , Citocininas/metabolismo , DNA Topoisomerases Tipo II/genética , Genes de Plantas , Histidina Quinase , Lotus/microbiologia , Meristema/embriologia , Meristema/microbiologia , Mutação , Fenótipo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais , Simbiose
14.
Proc Natl Acad Sci U S A ; 111(40): 14619-24, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246576

RESUMO

Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Homeodomínio/genética , Meristema/metabolismo , Células-Tronco/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Comunicação Celular/genética , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/citologia , Microscopia Confocal , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Multimerização Proteica , Transporte Proteico/genética , Transdução de Sinais/genética
15.
Development ; 140(2): 353-61, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23250209

RESUMO

During the course of evolution, mainly leguminous plants have acquired the ability to form de novo structures called root nodules. Recent studies on the autoregulation and hormonal controls of nodulation have identified key mechanisms and also indicated a possible link to other developmental processes, such as the formation of the shoot apical meristem (SAM). However, our understanding of nodulation is still limited by the low number of nodulation-related genes that have been identified. Here, we show that the induced mutation tricot (tco) can suppress the activity of spontaneous nodule formation 2, a gain-of-function mutation of the cytokinin receptor in Lotus japonicus. Our analyses of tco mutant plants demonstrate that TCO positively regulates rhizobial infection and nodule organogenesis. Defects in auxin regulation are also observed during nodule development in tco mutants. In addition to its role in nodulation, TCO is involved in the maintenance of the SAM. The TCO gene was isolated by a map-based cloning approach and found to encode a putative glutamate carboxypeptidase with greatest similarity to Arabidopsis ALTERED MERISTEM PROGRAM 1, which is involved in cell proliferation in the SAM. Taken together, our analyses have not only identified a novel gene for regulation of nodule organogenesis but also provide significant additional evidence for a common genetic regulatory mechanism in nodulation and SAM formation. These new data will contribute further to our understanding of the evolution and genetic basis of nodulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carboxipeptidases/genética , Regulação da Expressão Gênica de Plantas , Lotus/enzimologia , Lotus/fisiologia , Meristema/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Carboxipeptidases/metabolismo , Clonagem Molecular , Citocininas/metabolismo , Genes de Plantas , Genótipo , Hibridização In Situ , Modelos Genéticos , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo
16.
J Plant Res ; 129(5): 909-919, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27294965

RESUMO

Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus, two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE-ROOT SIGNAL 1 (CLE-RS1) and -RS2, act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicus CLE genes that are potentially involved in nodulation, designated as CLE-RS3 and LjCLE40. Time-course expression patterns showed that CLE-RS1/2/3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE-RS3 significantly suppressed nodule formation in a HAR1-dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE-RS2, CLE-RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lotus/genética , Proteínas de Plantas/genética , Nodulação/genética , Sequência de Aminoácidos , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lotus/efeitos dos fármacos , Nitratos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Transformação Genética
17.
Development ; 139(21): 3997-4006, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23048184

RESUMO

Nodulation is a form of de novo organogenesis that occurs mainly in legumes. During early nodule development, the host plant root is infected by rhizobia that induce dedifferentiation of some cortical cells, which then proliferate to form the symbiotic root nodule primordium. Two classic phytohormones, cytokinin and auxin, play essential roles in diverse aspects of cell proliferation and differentiation. Although recent genetic studies have established how activation of cytokinin signaling is crucial to the control of cortical cell differentiation, the physiological pathways through which auxin might act in nodule development are poorly characterized. Here, we report the detailed patterns of auxin accumulation during nodule development in Lotus japonicus. Our analyses showed that auxin predominantly accumulates in dividing cortical cells and that NODULE INCEPTION, a key transcription factor in nodule development, positively regulates this accumulation. Additionally, we found that auxin accumulation is inhibited by a systemic negative regulatory mechanism termed autoregulation of nodulation (AON). Analysis of the constitutive activation of LjCLE-RS genes, which encode putative root-derived signals that function in AON, in combination with the determination of auxin accumulation patterns in proliferating cortical cells, indicated that activation of LjCLE-RS genes blocks the progress of further cortical cell division, probably through controlling auxin accumulation. Our data provide evidence for the existence of a novel fine-tuning mechanism that controls nodule development in a cortical cell stage-dependent manner.


Assuntos
Ácidos Indolacéticos/metabolismo , Lotus/citologia , Lotus/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/metabolismo , Divisão Celular/fisiologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética , Nodulação/fisiologia
18.
Plant Physiol ; 165(2): 747-758, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24722550

RESUMO

Legume-rhizobium symbiosis occurs in specialized root organs called nodules. To establish the symbiosis, two major genetically controlled events, rhizobial infection and organogenesis, must occur. For a successful symbiosis, it is essential that the two phenomena proceed simultaneously in different root tissues. Although several symbiotic genes have been identified during genetic screenings of nonsymbiotic mutants, most of the mutants harbor defects in both infection and organogenesis pathways, leading to experimental difficulty in investigating the molecular genetic relationships between the pathways. In this study, we isolated a novel nonnodulation mutant, daphne, in Lotus japonicus that shows complete loss of nodulation but a dramatically increased numbers of infection threads. Characterization of the locus responsible for these phenotypes revealed a chromosomal translocation upstream of NODULE INCEPTION (NIN) in daphne. Genetic analysis using a known nin mutant revealed that daphne is a novel nin mutant allele. Although the daphne mutant showed reduced induction of NIN after rhizobial infection, the spatial expression pattern of NIN in epidermal cells was broader than that in the wild type. Overexpression of NIN strongly suppressed hyperinfection in daphne, and daphne phenotypes were partially rescued by cortical expression of NIN. These observations suggested that the daphne mutation enhanced the role of NIN in the infection pathway due to a specific loss of the role of NIN in nodule organogenesis. Based on these results, we provide evidence that the bifunctional transcription factor NIN negatively regulates infection but positively regulates nodule organogenesis during the course of the symbiosis.

19.
aBIOTECH ; 5(1): 107-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576431

RESUMO

Legumes have evolved specific inventions to enhance nitrogen (N) acquisition by establishing symbiotic interactions with N-fixing rhizobial bacteria. Because symbiotic N fixation is energetically costly, legumes have developed sophisticated mechanisms to ensure carbon-nitrogen balance, in a variable environment, both locally and at the whole plant level, by monitoring nodule number, nodule development, and nodular nitrogenase activity, as well as controlling nodule senescence. Studies of the autoregulation of nodulation and regulation of nodulation by nodule inception (NIN) and NIN-LIKE PROTEINs (NLPs) have provided great insights into the genetic mechanisms underlying the nitrate-induced regulation of root nodulation for adapting to N availability in the rhizosphere. However, many aspects of N-induced pleiotropic regulation remain to be fully explained, such as N-triggered senescence in mature nodules. Wang et al. determined that this process is governed by a transcriptional network regulated by NAC-type transcription factors. Characterization and dissection of these soybean nitrogen-associated NAPs (SNAPs) transcription factor-mastered networks have yielded a roadmap for exploring how legumes rewire nodule functions across a range of N levels, laying the foundation for enhancing the growth of N-deprived crops in agricultural settings.

20.
Nat Commun ; 15(1): 733, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286991

RESUMO

Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.


Assuntos
Arabidopsis , Lotus , Humanos , Nódulos Radiculares de Plantas/metabolismo , Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Fixação de Nitrogênio/fisiologia , Simbiose/fisiologia , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA