RESUMO
The reduced chain entanglement of brush polymers over their linear analogs drastically lowers the energetic barriers to reorganization. In this report, we demonstrate the rapid self-assembly of brush block copolymers to nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet (UV) to near infrared (NIR). Linear relationships were observed between the peak wavelengths of reflection and polymer molecular weights. This work enables "bottom-up" fabrication of photonic crystals with application-tailored bandgaps, through synthetic control of the polymer molecular weight and the method of self-assembly. These polymers could be developed into NIR-reflective paints, to combat the "urban heat island effect" due to NIR photon thermalization.
Assuntos
Cristalização/métodos , Nanoestruturas/química , Fótons , Polímeros/químicaRESUMO
Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE® 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.
Assuntos
Antimaláricos , Malária , Humanos , Malária/tratamento farmacológico , Lumefantrina , Artemeter , Ácidos GraxosRESUMO
In this report, we explore the capability of macromolecules to interdigitate into densely grafted molecular brush copolymers. We demonstrate that by using the tendency for stereocomplexation between poly(l-lactide) and poly(d-lactide) as a driving force complementary linear polymers and brush copolymers can form a stereocomplex. However, stereocomplex formation between complementary brush copolymers is restricted and only partially observed when the side chains are of a critical molecular weight.
RESUMO
We describe a simple route to fabricate two dimensionally well-ordered, periodic nanopatterns using the self-assembly of brush block copolymers (brush BCPs). Well-developed lamellar microdomains oriented perpendicular to the substrate are achieved, without modification of the underlying substrates, and structures with feature sizes greater than 200 nm are generated due to the reduced degree of chain entanglements of brush BCPs. A near-perfect linear scaling law was found for the period, L, as a function of backbone degree of polymerization (DP) for two series of brush BCPs. The exponent increases slightly from 0.99 to 1.03 as the side chain molecular weight increases from â¼2.4 to â¼4.5 kg/mol(-1) and saturated with further increase in the side chain molecular weight due to the entropic penalty associated with the packing of the side chains. Porous templates and scaffolds from brush BCP thin films are also obtained by selective etching of one component.
RESUMO
Self-assembled structures of brush block copolymers (BrBCPs) with polylactide (PLA) and polystyrene (PS) side chains were studied. The polynorbornene-backbone-based BrBCPs containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing ranging from 20 to 240 nm by varying molecular weight of the backbone in the bulk state, as revealed by small-angle X-ray scattering (SAXS). The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. In situ SAXS measurements suggested that the BrBCPs self-assemble with an extremely fast manner which could be attributed to a reduced number of entanglements between chains. The strong segregation theory and Monte Carlo simulation also confirmed this near-linear dependence of the domain spacing on backbone length, rationalizing experimental results.