Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691821

RESUMO

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Assuntos
Bases de Dados de Proteínas , Software , Análise por Conglomerados , Confiabilidade dos Dados , Europa (Continente) , Conformação Proteica , Interface Usuário-Computador
2.
Nucleic Acids Res ; 46(D1): D399-D405, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29036719

RESUMO

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.


Assuntos
Aminoácidos/química , Citocromo P-450 CYP2D6/química , Bases de Dados de Proteínas , Canais Iônicos/química , Poro Nuclear/química , Software , Aminoácidos/metabolismo , Animais , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutação , Poro Nuclear/genética , Poro Nuclear/metabolismo , Células Procarióticas/citologia , Células Procarióticas/enzimologia , Eletricidade Estática
3.
Nucleic Acids Res ; 46(W1): W368-W373, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718451

RESUMO

MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.


Assuntos
Biologia Computacional , Internet , Conformação Proteica , Software , Modelos Moleculares
4.
Nucleic Acids Res ; 43(W1): W383-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26013810

RESUMO

Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.


Assuntos
Bases de Dados de Proteínas , Conformação Molecular , Software , Sítios de Ligação , Internet , Lectinas/química , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Proteica , Dedos de Zinco
5.
Nucleic Acids Res ; 43(Database issue): D369-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392418

RESUMO

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Aminoácidos/química , Internet , Ligantes , Modelos Moleculares , Anotação de Sequência Molecular , Conformação Proteica , Reprodutibilidade dos Testes
6.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763518

RESUMO

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Assuntos
Química Farmacêutica/métodos , Proteínas/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Epigênese Genética , Relação Estrutura-Atividade , Biologia de Sistemas
7.
J Chem Inf Model ; 55(6): 1088-97, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26010215

RESUMO

The acid dissociation constant is an important molecular property, and it can be successfully predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico designed molecules. We analyzed how the methodology of in silico 3D structure preparation influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel, and RDKit) combined with four different types of optimization. These analyses were performed for three classes of molecules (phenols, carboxylic acids, anilines), and the QSPR model descriptors were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 516 QSPR models and afterward systematically analyzed the influence of the 3D structure source and other factors on their quality. Our results confirmed that QSPR models based on partial atomic charges are able to predict pKa with high accuracy. We also confirmed that ab initio and semiempirical QM charges provide very accurate QSPR models and using empirical charges based on electronegativity equalization is also acceptable, as well as advantageous, because their calculation is very fast. On the other hand, Gasteiger-Marsili empirical charges are not applicable for pKa prediction. We later found that QSPR models for some classes of molecules (carboxylic acids) are less accurate. In this context, we compared the influence of different 3D structure sources. We found that an appropriate selection of 3D structure source and optimization method is essential for the successful QSPR modeling of pKa. Specifically, the 3D structures from the DTP NCI and Pubchem databases performed the best, as they provided very accurate QSPR models for all the tested molecular classes and charge calculation approaches, and they do not require optimization. Also, Frog2 performed very well. Other 3D structure sources can also be used but are not so robust, and an unfortunate combination of molecular class and charge calculation approach can produce weak QSPR models. Additionally, these 3D structures generally need optimization in order to produce good quality QSPR models.


Assuntos
Fenômenos Químicos , Modelos Moleculares , Conformação Molecular , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Desenho de Fármacos , Teoria Quântica
8.
BMC Bioinformatics ; 15: 379, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403510

RESUMO

BACKGROUND: Enzyme active sites can be connected to the exterior environment by one or more channels passing through the protein. Despite our current knowledge of enzyme structure and function, surprisingly little is known about how often channels are present or about any structural features such channels may have in common. RESULTS: Here, we analyze the long channels (i.e. >15 Å) leading to the active sites of 4,306 enzyme structures. We find that over 64% of enzymes contain two or more long channels, their typical length being 28 Å. We show that amino acid compositions of the channel significantly differ both to the composition of the active site, surface and interior of the protein. CONCLUSIONS: The majority of enzymes have buried active sites accessible via a network of access channels. This indicates that enzymes tend to have buried active sites, with channels controlling access to, and egress from, them, and that suggests channels may play a key role in helping determine enzyme substrate.


Assuntos
Aminoácidos/química , Enzimas/química , Canais Iônicos/fisiologia , Aminoácidos/genética , Domínio Catalítico , Enzimas/genética , Humanos , Modelos Moleculares , Conformação Proteica
9.
Nucleic Acids Res ; 40(Web Server issue): W222-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553366

RESUMO

Biomolecular channels play important roles in many biological systems, e.g. enzymes, ribosomes and ion channels. This article introduces a web-based interactive MOLEonline 2.0 application for the analysis of access/egress paths to interior molecular voids. MOLEonline 2.0 enables platform-independent, easy-to-use and interactive analyses of (bio)macromolecular channels, tunnels and pores. Results are presented in a clear manner, making their interpretation easy. For each channel, MOLEonline displays a 3D graphical representation of the channel, its profile accompanied by a list of lining residues and also its basic physicochemical properties. The users can tune advanced parameters when performing a channel search to direct the search according to their needs. The MOLEonline 2.0 application is freely available via the Internet at http://ncbr.muni.cz/mole or http://mole.upol.cz.


Assuntos
Enzimas/química , Ribossomos/química , Software , Gráficos por Computador , Citocromo P-450 CYP3A/química , Internet , Canais Iônicos/química , Modelos Moleculares , Conformação Proteica , Subunidades Ribossômicas Maiores de Arqueas/química , Interface Usuário-Computador
10.
PLoS Comput Biol ; 8(6): e1002565, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719244

RESUMO

The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure.


Assuntos
Modelos Biológicos , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Apoptose/fisiologia , Biologia Computacional , Simulação por Computador , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
11.
J Chem Inf Model ; 53(10): 2548-58, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23968236

RESUMO

We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.


Assuntos
Insulina/química , Modelos Químicos , Fragmentos de Peptídeos/química , Software , Ubiquitina/química , Simulação por Computador , Bases de Dados de Proteínas , Gases , Humanos , Conformação Proteica , Teoria Quântica , Sensibilidade e Especificidade , Soluções , Eletricidade Estática , Fatores de Tempo
12.
J Chem Inf Model ; 51(8): 1795-806, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21761919

RESUMO

The acid dissociation (ionization) constant pK(a) is one of the fundamental properties of organic molecules. We have evaluated different computational strategies and models to predict the pK(a) values of substituted phenols using partial atomic charges. Partial atomic charges for 124 phenol molecules were calculated using 83 approaches containing seven theory levels (MP2, HF, B3LYP, BLYP, BP86, AM1, and PM3), three basis sets (6-31G*, 6-311G, STO-3G), and five population analyses (MPA, NPA, Hirshfeld, MK, and Löwdin). The correlations between pK(a) and various atomic charge descriptors were examined, and the best descriptors were selected for preparing the quantitative structure-property relationship (QSPR) models. One QSPR model was created for each of the 83 approaches to charge calculation, and then the accuracy of all these models was analyzed and compared. The pK(a)s predicted by most of the models correlate strongly with experimental pK(a) values. For example, more than 25% of the models have correlation coefficients (R²) greater than 0.95 and root-mean-square errors smaller than 0.49. All seven examined theory levels are applicable for pK(a) prediction from charges. The best results were obtained for the MP2 and HF level of theory. The most suitable basis set was found to be 6-31G*. The 6-311G basis set provided slightly weaker correlations, and unexpectedly also, the STO-3G basis set is applicable for the QSPR modeling of pK(a). The Mulliken, natural, and Löwdin population analyses provide accurate models for all tested theory levels and basis sets. The results provided by the Hirshfeld population analysis were also acceptable, but the QSPR models based on MK charges show only weak correlations.


Assuntos
Química Farmacêutica/métodos , Preparações Farmacêuticas/análise , Fenóis/análise , Química Farmacêutica/estatística & dados numéricos , Simulação por Computador , Cinética , Modelos Químicos , Modelos Estatísticos , Conformação Molecular , Preparações Farmacêuticas/química , Fenóis/química , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Eletricidade Estática
13.
Methods Mol Biol ; 1958: 47-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945213

RESUMO

Secondary structure elements (SSEs) are inherent parts of protein structures, and their arrangement is characteristic for each protein family. Therefore, annotation of SSEs can facilitate orientation in the vast number of homologous structures which is now available for many protein families. It also provides a way to identify and annotate the key regions, like active sites and channels, and subsequently answer the key research questions, such as understanding of molecular function and its variability.This chapter introduces the concept of SSE annotation and describes the workflow for obtaining SSE annotation for the members of a selected protein family using program SecStrAnnotator.


Assuntos
Motivos de Aminoácidos , Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos , Proteínas/química , Algoritmos , Domínio Catalítico/genética , Proteínas/genética , Software
14.
Acta Crystallogr D Struct Biol ; 74(Pt 3): 237-244, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533231

RESUMO

Realising the importance of assessing the quality of the biomolecular structures deposited in the Protein Data Bank (PDB), the Worldwide Protein Data Bank (wwPDB) partners established Validation Task Forces to obtain advice on the methods and standards to be used to validate structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and three-dimensional electron cryo-microscopy. The resulting wwPDB validation pipeline is an integral part of the wwPDB OneDep deposition, biocuration and validation system. The wwPDB Validation Service webserver (https://validate.wwpdb.org) can be used to perform checks prior to deposition. Here, it is shown how validation metrics can be combined to produce an overall score that allows the ranking of macromolecular structures and domains in search results. The ValTrendsDB database provides users with a convenient way to access and analyse validation information and other properties of X-ray crystal structures in the PDB, including investigating trends in and correlations between different structure properties and validation metrics.


Assuntos
Bases de Dados de Proteínas/normas , Internet , Substâncias Macromoleculares/química , Conformação Proteica , Proteínas/análise , Interface Usuário-Computador , Microscopia Crioeletrônica , Curadoria de Dados , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas/química
15.
Acta Crystallogr D Struct Biol ; 74(Pt 3): 228-236, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533230

RESUMO

Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) play a crucial role in structure-guided drug discovery and design, and also provide atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. The quality with which small-molecule ligands have been modelled in Protein Data Bank (PDB) entries has been, and continues to be, a matter of concern for many investigators. Correctly interpreting whether electron density found in a binding site is compatible with the soaked or co-crystallized ligand or represents water or buffer molecules is often far from trivial. The Worldwide PDB validation report (VR) provides a mechanism to highlight any major issues concerning the quality of the data and the model at the time of deposition and annotation, so the depositors can fix issues, resulting in improved data quality. The ligand-validation methods used in the generation of the current VRs are described in detail, including an examination of the metrics to assess both geometry and electron-density fit. It is found that the LLDF score currently used to identify ligand electron-density fit outliers can give misleading results and that better ligand-validation metrics are required.


Assuntos
Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Proteínas/análise , Proteínas/química , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular
16.
F1000Res ; 62017.
Artigo em Inglês | MEDLINE | ID: mdl-28751965

RESUMO

Scientific research relies on computer software, yet software is not always developed following practices that ensure its quality and sustainability. This manuscript does not aim to propose new software development best practices, but rather to provide simple recommendations that encourage the adoption of existing best practices. Software development best practices promote better quality software, and better quality software improves the reproducibility and reusability of research. These recommendations are designed around Open Source values, and provide practical suggestions that contribute to making research software and its source code more discoverable, reusable and transparent. This manuscript is aimed at developers, but also at organisations, projects, journals and funders that can increase the quality and sustainability of research software by encouraging the adoption of these recommendations.

17.
J Cheminform ; 8: 57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803746

RESUMO

BACKGROUND: The concept of partial atomic charges was first applied in physical and organic chemistry and was later also adopted in computational chemistry, bioinformatics and chemoinformatics. The electronegativity equalization method (EEM) is the most frequently used approach for calculating partial atomic charges. EEM is fast and its accuracy is comparable to the quantum mechanical charge calculation method for which it was parameterized. Several EEM parameter sets for various types of molecules and QM charge calculation approaches have been published and new ones are still needed and produced. Methodologies for EEM parameterization have been described in a few articles, but a software tool for EEM parameterization and EEM parameter sets validation has not been available until now. RESULTS: We provide the software tool NEEMP (http://ncbr.muni.cz/NEEMP), which offers three main functionalities: EEM parameterization [via linear regression (LR) and differential evolution with local minimization (DE-MIN)]; EEM parameter set validation (i.e., validation of coverage and quality) and EEM charge calculation. NEEMP functionality is shown using a parameterization and a validation case study. The parameterization case study demonstrated that LR is an appropriate approach for smaller and homogeneous datasets and DE-MIN is a suitable solution for larger and heterogeneous datasets. The validation case study showed that EEM parameter set coverage and quality can still be problematic. Therefore, it makes sense to verify the coverage and quality of EEM parameter sets before their use, and NEEMP is an appropriate tool for such verification. Moreover, it seems from both case studies that new EEM parameterizations need to be performed and new EEM parameter sets obtained with high quality and coverage for key structural databases. CONCLUSION: We provide the software tool NEEMP, which is to the best of our knowledge the only available software package that enables EEM parameterization and EEM parameter set validation. Additionally, its DE-MIN parameterization method is an innovative approach, developed by ourselves and first published in this work. In addition, we also prepared four high-quality EEM parameter sets tailored to ligand molecules.Graphical abstract.

18.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27635232

RESUMO

Metrics for assessing adoption of good development practices are a useful way to ensure that software is sustainable, reusable and functional. Sustainability means that the software used today will be available - and continue to be improved and supported - in the future. We report here an initial set of metrics that measure good practices in software development. This initiative differs from previously developed efforts in being a community-driven grassroots approach where experts from different organisations propose good software practices that have reasonable potential to be adopted by the communities they represent. We not only focus our efforts on understanding and prioritising good practices, we assess their feasibility for implementation and publish them here.

19.
J Cheminform ; 7: 59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633997

RESUMO

BACKGROUND: Partial atomic charges describe the distribution of electron density in a molecule and therefore provide clues to the chemical behaviour of molecules. Recently, these charges have become popular in chemoinformatics, as they are informative descriptors that can be utilised in pharmacophore design, virtual screening, similarity searches etc. Especially conformationally-dependent charges perform very successfully. In particular, their fast and accurate calculation via the Electronegativity Equalization Method (EEM) seems very promising for chemoinformatics applications. Unfortunately, published EEM parameter sets include only parameters for basic atom types and they often miss parameters for halogens, phosphorus, sulphur, triple bonded carbon etc. Therefore their applicability for drug-like molecules is limited. RESULTS: We have prepared six EEM parameter sets which enable the user to calculate EEM charges in a quality comparable to quantum mechanics (QM) charges based on the most common charge calculation schemes (i.e., MPA, NPA and AIM) and a robust QM approach (HF/6-311G, B3LYP/6-311G). The calculated EEM parameters exhibited very good quality on a training set ([Formula: see text]) and also on a test set ([Formula: see text]). They are applicable for at least 95 % of molecules in key drug databases (DrugBank, ChEMBL, Pubchem and ZINC) compared to less than 60 % of the molecules from these databases for which currently used EEM parameters are applicable. CONCLUSIONS: We developed EEM parameters enabling the fast calculation of high-quality partial atomic charges for almost all drug-like molecules. In parallel, we provide a software solution for their easy computation (http://ncbr.muni.cz/eem_parameters). It enables the direct application of EEM in chemoinformatics.

20.
J Cheminform ; 7: 50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500704

RESUMO

BACKGROUND: Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. RESULTS: This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. CONCLUSIONS: Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA