Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(19): e202317710, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407502

RESUMO

Stereoselective hydrogenation of tetrasubstituted olefins is an attractive method to access compounds with two contiguous stereocenters. However, homogeneous catalysts for enantio- and diastereoselective hydrogenation exhibit low reactivity toward tetrasubstituted olefins due to steric crowding between the ligand scaffold and the substrate. Monometallic heterogeneous catalysts, on the other hand, provide accessible surface active sites for hindered olefins but exhibit unpredictable and inconsistent stereoinduction. In this work, we develop a Pt-Ni bimetallic alloy catalyst that can diastereoselectively hydrogenate unactivated, sterically-bulky tetrasubstituted olefins, utilizing the more oxophilic Ni atoms to adsorb a hydroxyl directing group and direct facially-selective hydrogen addition to the olefin via the Pt atoms. Structure-activity studies on several Pt-Ni compositions underscore the importance of exposing a uniform PtNi alloy surface to achieve high diastereoselectivity and minimize side reactions. The optimized Pt-Ni/SiO2 catalyst exhibits good functional group tolerance and broad scope for tetrasubstituted olefins in a cyclopentene scaffold, generating cyclopentanol products with three contiguous stereocenters. The synthetic utility of the method is demonstrated in a four-step synthesis of (1R,2S)-(+)-cis-methyldihydrojasmonate with high yield and enantiopurity.

2.
Angew Chem Int Ed Engl ; 62(49): e202311575, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37844276

RESUMO

Black phosphorus (bP) is a two-dimensional van der Waals material unique in its potential to serve as a support for single-site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X-ray photoelectron and X-ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ-donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single-site catalysts.

3.
RSC Adv ; 11(45): 28347-28351, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480780

RESUMO

3-Aryl-1-phosphinoimidazo[1,5-a]pyridine ligands were synthesized from 2-aminomethylpyridine as the initial substrate via two complementary routes. The first synthetic pathway underwent the coupling of 2-aminomethylpyridine with substituted benzoyl chlorides, followed by cyclization, iodination and palladium-catalyzed cross-coupling phosphination reactions sequence to give our phosphorus ligands. In the second route, 2-aminomethylpyridine was cyclized with aryl aldehydes, followed by the iodination and palladium-catalyzed cross-coupling phosphination reactions to yield our phosphorus ligands. The 3-aryl-1-phosphinoimidazo[1,5-a]pyridine ligands were evaluated in palladium-catalyzed sterically-hindered biaryl and heterobiaryl Suzuki-Miyaura cross-coupling reactions.

4.
RSC Adv ; 9(31): 17778-17782, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520553

RESUMO

3-Aryl-2-phosphinoimidazo[1,2-a]pyridine ligands were synthesized from 2-aminopyridine via two complementary routes. The first synthetic route involves the copper-catalyzed iodine-mediated cyclizations of 2-aminopyridine with arylacetylenes followed by palladium-catalyzed cross-coupling reactions with phosphines. The second synthetic route requires the preparation of 2,3-diiodoimidazo[1,2-a]pyridine or 2-iodo-3-bromoimidazo[1,2-a]pyridine from 2-aminopyridine followed by palladium-catalyzed Suzuki/phosphination or a phosphination/Suzuki cross-coupling reactions sequence, respectively. Preliminary model studies on the Suzuki synthesis of sterically-hindered biaryl and Buchwald-Hartwig amination compounds are presented with these ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA