Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Chem Ecol ; 44(10): 922-939, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30054769

RESUMO

Significant progress has been made in understanding the cues involved in the host and mate seeking behaviors of spotted wing drosophila, Drosophila suzukii (Matsumura). This insect pest has been discovered in many fruit growing regions around the world since 2008. Unlike closely related Drosophila species, D. suzukii attacks fresh fruit and has become a severe pest of soft fruits including strawberry, cherry, blackberry, blueberry, raspberry, and may pose a threat to grapes. Prior to 2008, little was known about the courtship and host-seeking behaviors or chemical ecology of this pest. Since then, researchers have gained a better understanding of D. suzukii attraction to specific odors from fermentation, yeast, fruit, and leaf sources, and the visual cues that elicit long-range attraction. Several compounds have also been identified that elicit aversive behaviors in adult D. suzukii flies. Progress has been made in identifying the constituent compounds from these odor sources that elicit D. suzukii antennal responses in electrophysiological assays. Commercial lures based on food volatiles have been developed to attract D. suzukii using these components and efforts have been made to improve trap designs for monitoring this pest under field conditions. However, current food-based lures and trap technologies are not expected to be specific to D. suzukii and thus capture large numbers of non-target drosophilids. Attractive and aversive compounds are being evaluated for monitoring, mass trapping, and for the development of attract-and-kill and push-pull techniques to manage D. suzukii populations. This review outlines presently available research on the chemical ecology of D. suzukii and discusses areas for future research.


Assuntos
Drosophila/metabolismo , Ecologia/métodos , Animais , Sinais (Psicologia) , Drosophila/fisiologia , Especificidade de Hospedeiro , Controle de Insetos , Odorantes/análise
2.
BMC Genomics ; 17: 648, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530109

RESUMO

BACKGROUND: Drosophila suzukii differs from other melanogaster group members in their proclivity for laying eggs in fresh fruit rather than in fermenting fruits. Olfaction and gustation play a critical role during insect niche formation, and these senses are largely mediated by two important receptor families: olfactory and gustatory receptors (Ors and Grs). Earlier work from our laboratory has revealed how the olfactory landscape of D. suzukii is dominated by volatiles derived from its unique niche. Signaling and reception evolve in synchrony, since the interaction of ligands and receptors together mediate the chemosensory behavior. Here, we manually annotated the Ors and Grs in D. suzukii and two close relatives, D. biarmipes and D. takahashii, and compared these repertoires to those in other melanogaster group drosophilids to identify candidate chemoreceptors associated with D. suzukii's unusual niche utilization. RESULTS: Our comprehensive annotations of the chemosensory genomes in three species, and comparative analysis with other melanogaster group members provide insights into the evolution of chemosensation in the pestiferous D. suzukii. We annotated a total of 71 Or genes in D. suzukii, with nine of those being pseudogenes (12.7 %). Alternative splicing of two genes brings the total to 62 genes encoding 66 Ors. Duplications of Or23a and Or67a expanded D. suzukii's Or repertoire, while pseudogenization of Or74a, Or85a, and Or98b reduced the number of functional Ors to roughly the same as other annotated species in the melanogaster group. Seventy-one intact Gr genes and three pseudogenes were annotated in D. suzukii. Alternative splicing in three genes brings the total number of Grs to 81. We identified signatures of positive selection in two Ors and three Grs at nodes leading to D. suzukii, while three copies in the largest expanded Or lineage, Or67a, also showed signs of positive selection at the external nodes. CONCLUSION: Our analysis of D. suzukii's chemoreceptor repertoires in the context of nine melanogaster group drosophilids, including two of its closest relatives (D. biarmipes and D. takahashii), revealed several candidate receptors associated with the adaptation of D. suzukii to its unique ecological niche.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Evolução Molecular , Família Multigênica , Receptores de Superfície Celular/genética , Receptores Odorantes/genética , Animais , Evolução Biológica , Drosophila/ultraestrutura , Proteínas de Drosophila/química , Filogenia , Receptores de Superfície Celular/química , Receptores Odorantes/química , Seleção Genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura , Especificidade da Espécie
3.
Curr Opin Insect Sci ; 63: 101181, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38401667

RESUMO

Historically, some of the most effective tools to counter vector-borne diseases have been those directed against the vectors. Ticks are undergoing a population explosion as evidenced by the recent expansion of their distribution range. Tick control has traditionally relied heavily on pesticides. However, sustained use of acaricides is resulting in resistant tick populations. Multipronged management strategies that build and expand upon innovative control methods are sorely needed. Behavior-modifying chemicals, referred to as semiochemicals, such as pheromones and repellents, offer a first line of personal protection against ticks. We review the current understanding of tick semiochemicals, and how such understanding is leading to the identification of novel chemistries that are effective and safe.


Assuntos
Substâncias Protetoras , Controle de Ácaros e Carrapatos , Animais , Acaricidas , Repelentes de Insetos , Feromônios/farmacologia , Controle de Ácaros e Carrapatos/métodos , Carrapatos/efeitos dos fármacos , Carrapatos/fisiologia , Substâncias Protetoras/farmacologia
4.
Proc Natl Acad Sci U S A ; 107(20): 9436-9, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439725

RESUMO

Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the "empty neuron" system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor.


Assuntos
Bombyx/metabolismo , Drosophila melanogaster/metabolismo , Receptores Odorantes/metabolismo , Olfato/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bombyx/fisiologia , Drosophila melanogaster/fisiologia , Álcoois Graxos/metabolismo , Álcoois Graxos/farmacologia , Masculino , Receptores Odorantes/efeitos dos fármacos , Especificidade da Espécie
5.
J Insect Sci ; 13: 160, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24773407

RESUMO

In a previous study, the Drosophila melanogaster OR67d(GAL4);UAS system was used to functionally characterize the receptor for the major component of the sex pheromone in the tobacco budworm, Heliothis virescens Fabricius (Lepidoptera: Noctuidae), HvOR13. Electrophysiological and behavioral assays showed that transgenic flies expressing HvOR13 responded to (Z)-11-hexadecenal (Z11-16:Ald). However, tests were not performed to determine whether these flies would also respond to secondary components of the H. virescens sex pheromone. Thus, in this study the response spectrum of HvOR13 expressed in this system was examined by performing single cell recordings from odor receptor neuron in trichoid T1 sensilla on antennae of two Or67d(GAL4 [1]); UAS-HvOR13 lines stimulated with Z11-16:Ald and six H. virescens secondary pheromone components. Fly courtship assays were also performed to examine the behavioral response of the Or67d(GAL4[1]); UAS-HvOR13 flies to Z11-16:Ald and the secondary component Z9-14:Ald. Our combined electrophysiological and behavioral studies indicated high specificity and sensitivity of HvOR13 to Z11-16:Ald. Interestingly, a mutation leading to truncation in the HvOR13 C-terminal region affected but did not abolish pheromone receptor response to Z11-16:Ald. The findings are assessed in relationship to other HvOR13 heterologous expression studies, and the role of the C-terminal domain in receptor function is discussed. A third line expressing HvOR15 was also tested but did not respond to any of the seven pheromone components.


Assuntos
Antenas de Artrópodes/fisiologia , Proteínas de Insetos/genética , Mariposas/fisiologia , Receptores Odorantes/genética , Comportamento Sexual Animal , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Expressão Gênica , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Mariposas/genética , Receptores Odorantes/metabolismo , Sensilas/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Atrativos Sexuais/metabolismo
6.
Science ; 379(6633): 638-639, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795829

RESUMO

Volatile pheromones offer a means to control flies that spread disease.


Assuntos
Atrativos Sexuais , Comportamento Sexual Animal , Moscas Tsé-Tsé , Animais , Reprodução , Moscas Tsé-Tsé/fisiologia , Atrativos Sexuais/fisiologia
7.
Proc Natl Acad Sci U S A ; 106(44): 18803-8, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19858490

RESUMO

West Nile virus, which is transmitted by Culex mosquitoes while feeding on birds and humans, has emerged as the dominant vector borne disease in North America. We have identified natural compounds from humans and birds, which are detected with extreme sensitivity by olfactory receptor neurons (ORNs) on the antennae of Culex pipiens quinquefasciatus (Cx. quinquefasciatus). One of these semiochemicals, nonanal, dominates the odorant spectrum of pigeons, chickens, and humans from various ethnic backgrounds. We determined the specificity and sensitivity of all ORN types housed in different sensilla types on Cx. quinquefasciatus antennae. Here, we present a comprehensive map of all antennal ORNs coding natural ligands and their dose-response functions. Nonanal is detected by a large array of sensilla and is by far the most potent stimulus; thus, supporting the assumption that Cx. quinquefasciatus can smell humans and birds. Nonanal and CO(2) synergize, thus, leading to significantly higher catches of Culex mosquitoes in traps baited with binary than in those with individual lures.


Assuntos
Aves , Culex/efeitos dos fármacos , Culex/fisiologia , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Feromônios/farmacologia , Aldeídos/análise , Aldeídos/farmacologia , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/ultraestrutura , Animais , Dióxido de Carbono/farmacologia , Etnicidade , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/fisiologia , Feromônios/análise , Feromônios Humano/farmacologia , Microextração em Fase Sólida
8.
J Econ Entomol ; 115(4): 1029-1035, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35348733

RESUMO

Massive economic damage by spotted-wing drosophila (SWD), Drosophila suzukii, results from their unique egg laying behavior wherein a gravid fly pierces a ripening fruit to lay a number of eggs. Gravid SWD flies employ a complex suite of behaviors to find a fruit with the optimum firmness and chemistry. We investigated chemosensory cues potentially contributing to the oviposition behavior of SWD. In a series of experiments, we studied how the fruit ripeness and the underlying volatile chemistry influence oviposition. We tested the comparative attraction of three common fruits implicated in oviposition and determined raspberries to be most attractive in the trap choice assays that strictly measured olfactory preference. Since SWD oviposit in ripening fruits and appear to avoid the overripe fruit, we further evaluated the effect of ripeness on gravid fly attraction. Overripe fruits were significantly more attractive compared to the ripe fruits. The trap choice assays were repeated in an olfactory T-maze paradigm that provided a complex odor environment, potentially experienced by the gravid flies, and the results were mostly comparable. Since our behavioral paradigms indicated a clear olfactory preference for specific ripeness stages (ripe and overripe), we analyzed the constituent volatile odorants from the three ripening stages, revealing discrete odor profiles. Finally, we quantified the total soluble sugars and carbon dioxide concentrations from field-collected raspberries in underripe, ripe, and overripe conditions, revealing that the overripe stage is the most sugar-rich. Together, our results indicate unique chemosensory adaptations in gravid SWD flies for successfully exploiting optimal oviposition resources.


Assuntos
Drosophila , Oviposição , Animais , Feminino , Frutas , Odorantes
9.
Proc Natl Acad Sci U S A ; 105(36): 13598-603, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18711137

RESUMO

The insect repellent DEET is effective against a variety of medically important pests, but its mode of action still draws considerable debate. The widely accepted hypothesis that DEET interferes with the detection of lactic acid has been challenged by demonstrated DEET-induced repellency in the absence of lactic acid. The most recent hypothesis suggests that DEET masks or jams the olfactory system by attenuating electrophysiological responses to 1-octen-3-ol. Our research shows that mosquitoes smell DEET directly and avoid it. We performed single-unit recordings from all functional ORNs on the antenna and maxillary palps of Culex quinquefasciatus and found an ORN in a short trichoid sensillum responding to DEET in a dose-dependent manner. The same ORN responded with higher sensitivity to terpenoid compounds. SPME and GC analysis showed that odorants were trapped in conventional stimulus cartridges upon addition of a DEET-impregnated filter paper strip thus leading to the observed reduced electrophysiological responses, as reported elsewhere. With a new stimulus delivery method releasing equal amounts of 1-octen-3-ol alone or in combination with DEET we found no difference in neuronal responses. When applied to human skin, DEET altered the chemical profile of emanations by a "fixative" effect that may also contribute to repellency. However, the main mode of action is the direct detection of DEET as indicated by the evidence that mosquitoes are endowed with DEET-detecting ORNs and corroborated by behavioral bioassays. In a sugar-feeding assay, both female and male mosquitoes avoided DEET. In addition, mosquitoes responding only to physical stimuli avoided DEET.


Assuntos
Aprendizagem da Esquiva/fisiologia , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , DEET/farmacologia , Repelentes de Insetos/farmacologia , Olfato/fisiologia , Animais , Bioensaio , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Odorantes , Oxigênio/metabolismo , Estimulação Física
10.
J Insect Physiol ; 128: 104175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253713

RESUMO

The blacklegged tick, Ixodes scapularis (Ixodida, Ixodidae), is one of the major disease vectors in the United States, and due to multiple human impact factors, such as decreasing forest size for land development and climate change, it has expanded its range and established across the United States. Throughout the life cycle, ticks locate hosts for their blood-meal, and although the ecologies of this tick and their hosts have been studied in depth, the sensory physiology behind host location largely remains unexplored. Here, we report establishing a robust paradigm to isolate and identify odors from the natural milieu for I. scapularis. We performed single sensillum recordings (SSR) from the olfactory sensilla on the tick tarsi, and used the SSR system as a biological detector to isolate natural compounds that elicited biological activity. The SSR setup was further tested in tandem with gas chromatography (GC) wherein the ticks' olfactory sensillum activity served as a biological detector. The GC-SSR recordings from the wall pore sensilla in the Haller's organ, and further identification of the biologically active deer gland constituents by GC-mass spectrometry (GC-MS) revealed methyl substituted phenols as strong chemostimuli, as compared to ethyl or propyl substitutions. The strongest electrophysiological activity was elicited by m- cresol followed by p- cresol. Ethyl- and propylphenols with any of the three substitutions (ortho, meta or para), did not induce any neurophysiological activity. Finally, a behavioral analysis in a dual-choice olfactometer of all these phenols at three different doses revealed no significant behavioral response, except for p- cresol at -3 dilution. Overall, this study contributes to our understanding of I. scapularis tick's neurophysiology and provides a robust platform to isolate and identify natural attractants and repellents.


Assuntos
Ixodes/fisiologia , Olfatometria/métodos , Olfato/fisiologia , Animais , Comportamento Animal/fisiologia , Cromatografia Gasosa , Cervos , Neurofisiologia/métodos , Odorantes , Fenóis/metabolismo
11.
J Med Entomol ; 58(6): 2479-2483, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855440

RESUMO

Hand sanitizers are developed as alcohol-based liquid gel formulations, generally used to decrease the amount of infectious agents on human hands. Verdegen, LLC proposed to prepare an arthropod repellent gel for public use when the recent outbreaks of Zika infection vectored through Aedes mosquitoes in the American continents prompted multi-faceted emergency measures. Four different gel formulations were developed, comprising two of the most efficacious commercial arthropod repellent active ingredients, N,N-diethyl-3-methyl benzamide (deet) and 2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-methylpropyl ester (picaridin), each at different concentrations (20 and 33% deet, or 20 and 33% picaridin). Compliance with the use of topical arthropod repellents remains an issue among military personnel. One of the most common complaints by Soldiers is that they do not like how the repellents applied on their skin leave behind an oily or greasy residue. These new gel formulations offer a user-friendly alternative for commonly used arthropod repellents formulations for the military and civilian personnel. We tested the efficacy and protection time of these new gel formulations in comparison with the commercially available cream formulations of deet and picaridin at similar concentrations. Our data show that gel formulations have better topical attributes, and offer equal or better biting protection for up to 48 h against host-seeking Aedes aegypti (L.) (Diptera: Culicidae) female mosquitoes.


Assuntos
Aedes , DEET , Géis , Repelentes de Insetos , Piperidinas , Animais , Relação Dose-Resposta a Droga , Feminino , Géis/química , Repelentes de Insetos/química
12.
J Chem Ecol ; 36(7): 787-94, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20535533

RESUMO

General odorant-binding proteins (GOBPs) of moths are postulated to be involved in the reception of semiochemicals other than sex pheromones, the so-called "general odorants." We have expressed two GOBPs, AtraGOBP1 and AtraGOBP2, which were previously isolated from the antennae of the navel orangeworm, Amyelois transitella. Surprisingly, these two proteins did not bind compounds that are known to attract adult moths, particularly females. The proper folding and functionality of the recombinant proteins was inferred from circular dichroism analysis and demonstration that both GOBPs bound nonanal in a pH-dependent manner. EAG experiments demonstrated that female attractants (1-phenylethanol, propionic acid phenyl ester, and isobutyric acid phenyl ester) are detected with high sensitivity by the antennae of day-0 to day-4 adult females, with response declining in older moths. The same age-dependence was shown for male antennae responding to constituents of the sex pheromone. Interestingly, AtraGOBP2 bound the major constituent of the sex pheromone, Z11Z13-16Ald, with affinity comparable to that shown by a pheromone-binding protein, AtraPBP1. The related alcohol bound to AtraPBP1 with higher affinity than to AtraGOBP2. AtraGOBP1 bound both ligands with low but nearly the same affinity.


Assuntos
Mariposas/fisiologia , Receptores Odorantes/química , Atrativos Sexuais/fisiologia , Animais , Dicroísmo Circular , Feminino , Concentração de Íons de Hidrogênio , Masculino , Ligação Proteica , Dobramento de Proteína , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Atrativos Sexuais/química
13.
J Chem Ecol ; 36(3): 245-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20191395

RESUMO

Odorant-binding proteins (OBPs) were discovered almost three decades ago, but there is still considerable debate regarding their role(s) in insect olfaction, particularly due to our inability to knockdown OBPs and demonstrate their direct phenotypic effects. By using RNA interference (RNAi), we reduced transcription of a major OBP gene, CquiOBP1, in the antennae of the Southern house mosquito, Culex quinquefasciatus. Previously, we had demonstrated that the mosquito oviposition pheromone (MOP) binds to CquiOBP1, which is expressed in MOP-sensitive sensilla. Antennae of RNAi-treated mosquitoes showed significantly lower electrophysiological responses to known mosquito oviposition attractants than the antennae of water-injected, control mosquitoes. While electroantennogram (EAG) responses to MOP, skatole, and indole were reduced in the knockdowns, there was no significant difference in the EAG responses from RNAi-treated and water-injected mosquito antennae to nonanal at all doses tested. These data suggest that CquiOBP1 is involved in the reception of some oviposition attractants, and that high levels of OBPs expression are essential for the sensitivity of the insect's olfactory system.


Assuntos
Oviposição/fisiologia , Feromônios/fisiologia , Receptores Odorantes/metabolismo , Animais , Culicidae/genética , Eletrocardiografia , Técnicas de Silenciamento de Genes , Interferência de RNA , Receptores Odorantes/antagonistas & inibidores , Receptores Odorantes/genética
14.
J Chem Ecol ; 36(1): 113-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20119869

RESUMO

Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.


Assuntos
Doenças Transmissíveis/transmissão , Doenças Transmissíveis/veterinária , Vetores de Doenças , Animais , Mudança Climática , Controle de Doenças Transmissíveis/métodos , Humanos
15.
PLoS Negl Trop Dis ; 14(12): e0008967, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370303

RESUMO

Phlebotomine sand flies employ an elaborate system of pheromone communication wherein males produce pheromones that attract other males to leks (thus acting as an aggregation pheromone) and females to the lekking males (sex pheromone). In addition, the type of pheromone produced varies among populations. Despite the numerous studies on sand fly chemical communication, little is known of their chemosensory genome. Chemoreceptors interact with chemicals in an organism's environment to elicit essential behaviors such as the identification of suitable mates and food sources. Thus, they play important roles during adaptation and speciation. Major chemoreceptor gene families, odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) together detect and discriminate the chemical landscape. Here, we annotated the chemoreceptor repertoire in the genomes of Lutzomyia longipalpis and Phlebotomus papatasi, major phlebotomine vectors in the New World and Old World, respectively. Comparison with other sequenced Diptera revealed a large and unique expansion where over 80% of the ~140 ORs belong to a single, taxonomically restricted clade. We next conducted a comprehensive analysis of the chemoreceptors in 63 L. longipalpis individuals from four different locations in Brazil representing allopatric and sympatric populations and three sex-aggregation pheromone types (chemotypes). Population structure based on single nucleotide polymorphisms (SNPs) and gene copy number in the chemoreceptors corresponded with their putative chemotypes, and corroborate previous studies that identified multiple populations. Our work provides genomic insights into the underlying behavioral evolution of sexual communication in the L. longipalpis species complex in Brazil, and highlights the importance of accounting for the ongoing speciation in central and South American Lutzomyia that could have important implications for vectorial capacity.


Assuntos
Células Quimiorreceptoras/metabolismo , Proteínas de Insetos/genética , Leishmaniose/prevenção & controle , Leishmaniose/transmissão , Phlebotomus/parasitologia , Atrativos Sexuais/química , Animais , Brasil , Feminino , Insetos Vetores/parasitologia , Leishmania , Masculino , Phlebotomus/genética , Phlebotomus/fisiologia , Polimorfismo de Nucleotídeo Único/genética
16.
Sci Rep ; 10(1): 20771, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247186

RESUMO

The screwworm fly, Cochliomyia hominivorax (Coquerel), was successfully eradicated from the United States by the sterile insect technique (SIT). However, recent detection of these flies in the Florida Keys, and increased risk of introductions to the other areas warrant novel tools for management of the flies. Surveillance, a key component of screwworm control programs, utilizes traps baited with rotting liver or a blend of synthetic chemicals such as swormlure-4. In this work, we evaluated the olfactory physiology of the screwworm fly and compared it with the non-obligate ectoparasitic secondary screwworm flies, C. macellaria, that invade necrotic wound and feed on dead tissue. These two species occur in geographically overlapping regions. C. macellaria, along with other blowflies such as the exotic C. megacephala, greatly outnumber C. hominivorax in the existing monitoring traps. Olfactory responses to swormlure-4 constituents between sex and mating status (mated vs unmated) in both species were recorded and compared. Overall, responses measured by the antennograms offered insights into the comparative olfactory physiology of the two fly species. We also present detailed analyses of the antennal transcriptome by RNA-Sequencing that reveal significant differences between male and female screwworm flies. The differential expression patterns were confirmed by quantitative PCR. Taken together, this integrated study provides insights into the physiological and molecular correlates of the screwworm's attraction to wounds, and identifies molecular targets that will aid in the development of odorant-based fly management strategies.


Assuntos
Dípteros/fisiologia , Odorantes/análise , Feromônios/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Comportamento Animal , Dípteros/classificação , Dípteros/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Masculino , Feromônios/farmacologia , RNA-Seq
17.
Commun Biol ; 3(1): 424, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753684

RESUMO

The New World Screwworm fly, Cochliomyia hominivorax, is a major pest of livestock in South America and Caribbean. However, few genomic resources have been available for this species. A genome of 534 Mb was assembled from long read PacBio DNA sequencing of DNA from a highly inbred strain. Analysis of molecular evolution identified 40 genes that are likely under positive selection. Developmental RNA-seq analysis identified specific genes associated with each stage. We identify and analyze the expression of genes that are likely important for host-seeking behavior (chemosensory), development of larvae in open wounds in warm-blooded animals (heat shock protein, immune response) and for building transgenic strains for genetic control programs including gene drive (sex determination, germline). This study will underpin future experiments aimed at understanding the parasitic lifestyle of the screwworm fly and greatly facilitate future development of strains for efficient systems for genetic control of screwworm.


Assuntos
Calliphoridae/genética , Evolução Molecular , Gado/genética , Infecção por Mosca da Bicheira/genética , Animais , Calliphoridae/patogenicidade , Regulação da Expressão Gênica/genética , Genômica/métodos , Interações Hospedeiro-Parasita/genética , Larva/genética , Larva/crescimento & desenvolvimento , Gado/parasitologia , Controle Biológico de Vetores , RNA-Seq , Infecção por Mosca da Bicheira/parasitologia , América do Sul
18.
Insect Biochem Mol Biol ; 115: 103244, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560967

RESUMO

Three different pheromone binding proteins (PBPs) can typically be found in the sensilla lymph of noctuid moth antennae, but their relative contributions in perception of the sex pheromone is rarely verified in vivo. Previously, we demonstrated that SlitPBP3 plays a minor role in the sex pheromone detection in Spodoptera litura using the CRISPR/Cas9 system. In the present study, the roles of two other SlitPBPs (SlitPBP1 and SlitPBP2) are further verified using the same system. First, by co-injection of Cas9 mRNA/sgRNA into newly laid eggs, a high rate of target mutagenesis was induced, 51.5% for SlitPBP1 and 46.8% for SlitPBP2 as determined by restriction enzyme assay. Then, the homozygous SlitPBP1 and SlitPBP2 knockout lines were obtained by cross-breeding. Finally, using homozygous knockout male moths, we performed electrophysiological (EAG recording) and behavioral analyses. Results showed that knockout of either SlitPBP1 or SlitPBP2 in males decreased EAG response to each of the 3 sex pheromone components (Z9,E11-14:Ac, Z9,E12-14:Ac and Z9-14:Ac) by 53%, 60% and 63% (for SlitPBP1 knockout) and 40%, 43% and 46% (for SlitPBP2 knockout), respectively. These decreases in EAG responses were similar among 3 pheromone components, but were more pronounced in SlitPBP1 knockout males than in SlitPBP2 knockout males. Consistently, behavioral assays with the major component (Z9,E11-14:Ac) showed that SlitPBP1 knockout males responded in much lower percentages than SlitPBP2 knockout males in terms of orientation to the pheromone, along with reduction in close range behaviors such as hairpencil display and mating attempt. Taken together, this study provides direct functional evidence for the roles of SlitPBP1 and SlitPBP2, as well as their relative importance (SlitPBP1 > SlitPBP2) in the sex pheromone perception. This information is valuable in understanding mechanisms of sex pheromone perception and may facilitate the development of PBP-targeted pest control techniques.


Assuntos
Comunicação Animal , Antenas de Artrópodes/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Insetos/fisiologia , Percepção Olfatória , Spodoptera/fisiologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Feminino , Masculino , Mutação , Atrativos Sexuais
19.
J Econ Entomol ; 112(6): 2850-2860, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31429468

RESUMO

The invasive spotted-wing drosophila, Drosophila suzukii (Matsumura), is a major pest of soft-skinned fruits. Since its introduction into North America and Europe, significant progress has been made in understanding the volatile cues used by this fly during food, oviposition site, and mate finding. Despite this progress, commercially available lures are non-selective. Here, we tested two Hanseniaspora uvarum (Niehaus) yeast compounds (isoamyl acetate and isobutyl acetate) and a leaf compound ß-cyclocitral alone and in combination with a blend of four fermentation compounds ('Fermentation lure': acetic acid, ethanol, methionol, and acetoin) to improve D. suzukii attraction and selectivity. In laboratory assays, males and females were attracted to all seven individual compounds, although in electrophysiological assays, their antennae exhibited a dose-dependent response to only four of these compounds. In two-choice cage studies, the Fermentation lure was more attractive to D. suzukii than water controls, whereas ß-cyclocitral and the mixture of isoamyl acetate and isobutyl acetate were not attractive in this larger-cage study. Moreover, adding the two-component H. uvarum compound blend to the Fermentation lure reduced D. suzukii attraction to the Fermentation blend. When these experiments were repeated in blueberry, raspberry, blackberry, and cherry orchards across several states in the United States over 2 yr, similar outcomes were observed: ß-cyclocitral or the mixture of the H. uvarum blend did not improve the attractiveness of the Fermentation lure or its selectivity. This study demonstrates that cues from different sources may interfere with each other and reduce D. suzukii attraction to otherwise attractive odor combinations.


Assuntos
Drosophila , Odorantes , Animais , Sinais (Psicologia) , Europa (Continente) , Feminino , Controle de Insetos , Masculino , América do Norte
20.
Curr Opin Insect Sci ; 10: 83-89, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29588018

RESUMO

Hematophagous arthropods (ticks and insects, collectively hereafter referred to as vectors) transmit various life threatening diseases resulting in over one million human deaths annually. Exploiting vertebrates for blood demanded extensive sensory and behavioral adaptations that are apparent across the evolutionary range of vector species, from primitive ticks to advanced dipterans. Since animal senses are biological features that have been shaped by natural selection to promote adaptive behavior, a variety of exciting patterns are apparent in what they sense and how. Vectors display robust olfactory driven behaviors. A distinct yet limited range of volatile organic compounds are parsimoniously used as major cues for tracking in various contexts. These chemicals elicit behaviors such as attraction or repulsion/avoidance while vectors seek habitats, hosts, mates, or oviposition sites. Interestingly, there is a substantial consilience among olfactory structures and function in arthropod vectors, which is also reflected in the parsimonious use of chemical ligands. A detailed analysis of chemosensory signals and reception by these arthropod vectors can be exploited to identify natural ligands that can be used as baits to manipulate vector behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA