Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Biol Sci ; 291(2015): 20232480, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38262606

RESUMO

Morphology is integral to body temperature regulation. Recent advances in understanding of thermal physiology suggest a role of the avian bill in thermoregulation. To explore the adaptive significance of bill size for thermoregulation we characterized relationships between bill size and climate extremes. Most previous studies focused on climate means, ignoring frequencies of extremes, and do not reflect thermoregulatory costs experienced over shorter time scales. Using 79 species (9847 museum specimens), we explore how bill size variation is associated with temperature extremes in a large and diverse radiation of Australasian birds, Meliphagides, testing a series of predictions. Overall, across the continent, bill size variation was associated with both climate extremes and means and was most strongly associated with winter temperatures; associations at the level of climate zones differed from continent-wide associations and were complex, yet consistent with physiology and a thermoregulatory role for avian bills. Responses to high summer temperatures were nonlinear suggesting they may be difficult to detect in large-scale continental analyses using previous methodologies. We provide strong evidence that climate extremes have contributed to the evolution of bill morphology in relation to thermoregulation and show the importance of including extremes to understand fine-scale trait variation across space.


Assuntos
Bico , Temperatura Alta , Animais , Temperatura , Austrália , Clima
2.
Biol Lett ; 19(11): 20230373, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37990562

RESUMO

Endotherms use their appendages-such as legs, tails, ears and bills-for thermoregulation by controlling blood flow to near-surface blood vessels, conserving heat when it is cold, and dissipating heat in hot conditions. Larger appendages allow greater heat dissipation, and appendage sizes vary latitudinally according to Allen's rule. However, little is known about the relative importance of different appendages for thermoregulation. We investigate physiological control of heat loss via bird bills and legs using infrared thermography of wild birds. Our results demonstrate that birds are less able to regulate heat loss via their bills than their legs. In cold conditions, birds lower their leg surface temperature to below that of their plumage surface, retaining heat at their core. In warm conditions, birds increase their leg surface temperature to above that of their plumage surface, expelling heat. By contrast, bill surface temperature remains approximately 2°C warmer than the plumage surface, indicating consistent heat loss under almost all conditions. Poorer physiological control of heat loss via bird bills likely entails stronger selection for shorter bills in cold climates. This could explain why bird bills show stronger latitudinal size clines than bird legs, with implications for predicting shape-shifting responses to climate change.


Assuntos
Bico , Somatotipos , Animais , Bico/fisiologia , Aves/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura
3.
Naturwissenschaften ; 110(3): 16, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140757

RESUMO

The introduction and spread of non-native flora threatens native pollinators and plants. Non-native angiosperms can compete with native plants for pollinators, space, and other resources which can leave native bees without adequate nutritional or nesting resources, particularly specialist species. In the current study, we conducted flower preference experiments through field observations and controlled binary choice tests in an artificial arena to determine the impact of field vs. laboratory methods on flower preferences of native bees for native or non-native flowers within their foraging range. We conducted counts of insect pollinators foraging on the flowers of three plant species in a suburban green belt including one native (Arthropodium strictum) and two non-native (Arctotheca calendula and Taraxacum officinale) plant species. We then collected native halictid bees foraging on each of the three plant species and conducted controlled binary tests to determine their preferences for the flowers of native or non-native plant species. In the field counts, halictid bees visited the native plant significantly more than the non-native species. However, in the behavioural assays when comparing A. strictum vs. A. calendula, Lasioglossum (Chilalictus) lanarium (Family: Halictidae), bees significantly preferred the non-native species, regardless of their foraging history. When comparing A. strictum vs. T. officinale, bees only showed a preference for the non-native flower when it had been collected foraging on the flowers of that plant species immediately prior to the experiment; otherwise, they showed no flower preference. Our results highlight the influence that non-native angiosperms have on native pollinators and we discuss the complexities of the results and the possible reasons for different flower preferences under laboratory and field conditions.


Assuntos
Magnoliopsida , Polinização , Abelhas , Animais , Parques Recreativos , Flores , Plantas , Insetos
4.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457129

RESUMO

Despite making up a significant proportion of airborne allergens, the relationship between fungal spores and asthma is not fully explored. Only 80 taxa of fungi have so far been observed to exacerbate respiratory presentations, with Cladosporium spp., Aspergillus spp., Penicillium spp., and Alternaria spp. found to comprise the predominant allergenic airborne spores. Fungal spores have been found in indoor environments, such as hospitals and housing due to poor ventilation. Meanwhile, outdoor fungal spores exhibit greater diversity, and higher abundance and have been associated with hospitalizations from acute asthma presentations. In addition, fungal spores may be the underlying, and perhaps the "missing link", factor influencing the heightened rate of asthma presentations during epidemic thunderstorm asthma events. To improve our knowledge gap on fungal spores, airborne allergen monitoring must be improved to include not only dominant allergenic fungi but also provide real-time data to accurately and quickly warn the general public. Such data will help prevent future asthma exacerbations and thus save lives. In this review, we examine the health risks of prominent allergenic fungal taxa, the factors influencing spore dispersal and distribution, and why improvements should be made to current sampling methods for public health and wellbeing.


Assuntos
Asma , Alérgenos , Asma/etiologia , Asma/microbiologia , Fungos , Hospitalização , Humanos , Prevalência , Esporos Fúngicos
5.
Am Nat ; 198(5): 653-659, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648400

RESUMO

AbstractWar influences wildlife in a variety of ways but may influence their escape responses to approaching threats, including humans, because of its effect on human populations and behavior and landscape change. We collected 1,400 flight initiation distances (FIDs) from 157 bird species in the dry zone of Sri Lanka, where civil war raged for 26 years, ending in 2009. Accounting for factors known to influence FIDs (phylogeny, starting distance of approaches, body mass, prevailing human density, group size, and location), we found that birds have longer FIDs in the part of the dry zone that experienced civil war. Larger birds-often preferred by human hunters-showed greater increases in FID in the war zone, consistent with the idea that war was associated with greater hunting pressure and that larger birds experienced longer-lasting trauma or had more plastic escape behavior than smaller species. While the mechanisms linking the war and avian escape responses remain ambiguous, wars evidently leave legacies that extend to behavioral responses in birds.


Assuntos
Aves , Animais , Humanos , Filogenia
6.
J Exp Biol ; 224(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34318316

RESUMO

The majority of angiosperms require animal pollination for reproduction, and insects are the dominant group of animal pollinators. Bees are considered one of the most important and abundant insect pollinators. Research into bee behaviour and foraging decisions has typically centred on managed eusocial bee species, including Apis mellifera and Bombus terrestris. Non-eusocial bees are understudied with respect to foraging strategies and decision making, such as flower preferences. Understanding whether there are fundamental foraging strategies and preferences that are features of insect groups can provide key insights into the evolution of flower-pollinator co-evolution. In the current study, Lasioglossum (Chilalictus) lanarium and Lasioglossum (Parasphecodes) sp., two native Australian generalist halictid bees, were tested for flower shape preferences between native insect-pollinated and bird-pollinated flowers. Each bee was presented with achromatic images of either insect-pollinated or bird-pollinated flowers in a circular arena. Both native bee species demonstrated a significant preference for images of insect-pollinated flowers. These preferences are similar to those found in A. mellifera, suggesting that flower shape preference may be a deep-rooted evolutionary occurrence within bees. With growing interest in the sensory capabilities of non-eusocial bees as alternative pollinators, the current study also provides a valuable framework for further behavioural testing of such species.


Assuntos
Flores , Polinização , Animais , Austrália , Abelhas , Aves , Insetos
7.
Biol Lett ; 16(1): 20190568, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937213

RESUMO

Passerine birds produce costly traits under intense sexual selection, including elaborate sexually dichromatic plumage and sperm morphologies, to compete for fertilizations. Plumage and sperm traits vary markedly among species, but it is unknown if this reflects a trade-off between pre- and post-copulatory investment under strong sexual selection producing negative trait covariance, or variation in the strength of sexual selection among species producing positive covariance. Using phylogenetic regression, we analysed datasets describing plumage and sperm morphological traits for 278 passerine species. We found a significant positive relationship between sperm midpiece length and male plumage elaboration and sexual dichromatism. We did not find a relationship between plumage elaboration and testes mass. Our results do not support a trade-off between plumage and sperm traits, but may be indicative of variance among species in the strength of sexual selection to produce both brightly coloured plumage and costly sperm traits.


Assuntos
Passeriformes , Comportamento Sexual Animal , Animais , Masculino , Fenótipo , Filogenia , Espermatozoides
8.
Proc Biol Sci ; 286(1916): 20192258, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31771472

RESUMO

The observed variation in the body size responses of endotherms to climate change may be explained by two hypotheses: the size increases with climate variability (the starvation resistance hypothesis) and the size shrinks as mean temperatures rise (the heat exchange hypothesis). Across 82 Australian passerine species over 50 years, shrinking was associated with annual mean temperature rise exceeding 0.012°C driven by rising winter temperatures for arid and temperate zone species. We propose the warming winters hypothesis to explain this response. However, where average summer temperatures exceeded 34°C, species experiencing annual rise over 0.0116°C tended towards increasing size. Results suggest a broad-scale physiological response to changing climate, with size trends probably reflecting the relative strength of selection pressures across a climatic regime. Critically, a given amount of temperature change will have varying effects on phenotype depending on the season in which it occurs, masking the generality of size patterns associated with temperature change. Rather than phenotypic plasticity, and assuming body size is heritable, results suggest selective loss or gain of particular phenotypes could generate evolutionary change but may be difficult to detect with current warming rates.


Assuntos
Tamanho Corporal/fisiologia , Aves Canoras/fisiologia , Adaptação Fisiológica , Animais , Austrália , Evolução Biológica , Mudança Climática , Fenótipo , Estações do Ano , Temperatura
9.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118139

RESUMO

Developmental plasticity provides individuals with a distinct advantage when the reproductive environment changes dramatically. Variation in population density, in particular, can have profound effects on male reproductive success. Females may be easier to locate in dense populations, but there may be a greater risk of sperm competition. Thus, males should invest in traits that enhance fertilization success over traits that enhance mate location. Conversely, males in less dense populations should invest more in structures that will facilitate mate location. In Lepidoptera, this may result in the development of larger antennae to increase the likelihood of detecting female sex pheromones, and larger wings to fly more efficiently. We explored the effects of larval density on adult morphology in the gum-leaf skeletonizer moth, Uraba lugens, by manipulating both the number of larvae and the size of the rearing container. This experimental arrangement allowed us to reveal the cues used by larvae to assess whether absolute number or density influences adult responses. Male investment in testes size depended on the number of individuals, while male investment in wings and antennae depended upon larval density. By contrast, the size of female antennae and wings were influenced by an interaction of larval number and container size. This study demonstrates that male larvae are sensitive to cues that may reveal adult population density, and adjust investment in traits associated with fertilization success and mate detection accordingly.


Assuntos
Antenas de Artrópodes/crescimento & desenvolvimento , Mariposas/fisiologia , Testículo/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Feminino , Fertilização , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mariposas/crescimento & desenvolvimento , Densidade Demográfica , Reprodução
10.
Naturwissenschaften ; 104(5-6): 44, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28474181

RESUMO

Sexual selection theory predicts that female choice may favour the evolution of elaborate male signals. Darwin also suggested that sexual selection can favour elaborate receiver structures in order to better detect sexual signals, an idea that has been largely ignored. We evaluated this unorthodox perspective by documenting the antennal lengths of male Uraba lugens Walker (Lepidoptera: Nolidae) moths that were attracted to experimentally manipulated emissions of female sex pheromone. Either one or two females were placed in field traps for the duration of their adult lives in order to create differences in the quantity of pheromone emissions from the traps. The mean antennal length of males attracted to field traps baited with a single female was longer than that of males attracted to traps baited with two females, a pattern consistent with Darwin's prediction assuming the latter emits higher pheromone concentrations. Furthermore, younger females attracted males with longer antennae, which may reflect age-specific changes in pheromone emission. These field experiments provide the first direct evidence of an unappreciated role for sexual selection in the evolution of sexual dimorphism in moth antennae and raise the intriguing possibility that females select males with longer antennae through strategic emission of pheromones.


Assuntos
Mariposas/anatomia & histologia , Mariposas/fisiologia , Comportamento Sexual Animal/fisiologia , Fatores Etários , Animais , Antenas de Artrópodes/anatomia & histologia , Evolução Biológica , Feminino , Masculino , Atrativos Sexuais , Caracteres Sexuais
11.
Oecologia ; 181(3): 783-93, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26936361

RESUMO

The capacity of non-native species to undergo rapid adaptive change provides opportunities to research contemporary evolution through natural experiments. This capacity is particularly true when considering ecogeographical rules, to which non-native species have been shown to conform within relatively short periods of time. Ecogeographical rules explain predictable spatial patterns of morphology, physiology, life history and behaviour. We tested whether Australian populations of non-native starling, Sturnus vulgaris, introduced to the country approximately 150 years ago, exhibited predicted environmental clines in body size, appendage size and heart size (Bergmann's, Allen's and Hesse's rules, respectively). Adult starlings (n = 411) were collected from 28 localities from across eastern Australia from 2011 to 2012. Linear models were constructed to examine the relationships between morphology and local environment. Patterns of variation in body mass and bill surface area were consistent with Bergmann's and Allen's rules, respectively (small body size and larger bill size in warmer climates), with maximum summer temperature being a strongly weighted predictor of both variables. In the only intraspecific test of Hesse's rule in birds to date, we found no evidence to support the idea that relative heart size will be larger in individuals which live in colder climates. Our study does provide evidence that maximum temperature is a strong driver of morphological adaptation for starlings in Australia. The changes in morphology presented here demonstrate the potential for avian species to make rapid adaptive changes in relation to a changing climate to ameliorate the effects of heat stress.


Assuntos
Aves , Tamanho Corporal , Animais , Austrália , Evolução Biológica , Clima , Humanos
12.
BMC Evol Biol ; 15: 29, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25879886

RESUMO

BACKGROUND: Aloe vera supports a substantial global trade yet its wild origins, and explanations for its popularity over 500 related Aloe species in one of the world's largest succulent groups, have remained uncertain. We developed an explicit phylogenetic framework to explore links between the rich traditions of medicinal use and leaf succulence in aloes. RESULTS: The phylogenetic hypothesis clarifies the origins of Aloe vera to the Arabian Peninsula at the northernmost limits of the range for aloes. The genus Aloe originated in southern Africa ~16 million years ago and underwent two major radiations driven by different speciation processes, giving rise to the extraordinary diversity known today. Large, succulent leaves typical of medicinal aloes arose during the most recent diversification ~10 million years ago and are strongly correlated to the phylogeny and to the likelihood of a species being used for medicine. A significant, albeit weak, phylogenetic signal is evident in the medicinal uses of aloes, suggesting that the properties for which they are valued do not occur randomly across the branches of the phylogenetic tree. CONCLUSIONS: Phylogenetic investigation of plant use and leaf succulence among aloes has yielded new explanations for the extraordinary market dominance of Aloe vera. The industry preference for Aloe vera appears to be due to its proximity to important historic trade routes, and early introduction to trade and cultivation. Well-developed succulent leaf mesophyll tissue, an adaptive feature that likely contributed to the ecological success of the genus Aloe, is the main predictor for medicinal use among Aloe species, whereas evolutionary loss of succulence tends to be associated with losses of medicinal use. Phylogenetic analyses of plant use offer potential to understand patterns in the value of global plant diversity.


Assuntos
Aloe/genética , Folhas de Planta/fisiologia , África , Aloe/classificação , Aloe/fisiologia , Evolução Biológica , Oriente Médio , Filogenia , Plantas Medicinais/classificação , Plantas Medicinais/genética , Plantas Medicinais/fisiologia
13.
Am Nat ; 185(3): 417-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25674695

RESUMO

Although females rarely experience strong mate limitation, delays or lifelong problems of mate acquisition are detrimental to female fitness. In systems where males search for females via pheromone plumes, it is often difficult to assess whether female signaling is costly. Direct costs include the energetics of pheromone production and attention from unwanted eavesdroppers, such as parasites, parasitoids, and predators. Suboptimal outcomes are also possible from too many or too few mating events or near-simultaneous arrival of males who make unwanted mating attempts (even if successfully thwarted). We show that, in theory, even small costs can lead to a scenario where young females signal less intensely (lower pheromone concentration and/or shorter time spent signaling) and increase signaling effort only as they age and gather evidence (while still virgin) on whether sperm limitation threatens their reproductive success. Our synthesis of the empirical data available on Lepidoptera supports this prediction for one frequently reported component of signaling-time spent calling (often reported as the time of onset of calling at night)-but not for another, pheromone titer. This difference is explicable under the plausible but currently untested assumption that signaling earlier than other females each night is a more reliable way of increasing the probability of acquiring at least one mate than producing a more concentrated pheromone plume.


Assuntos
Mariposas/fisiologia , Feromônios/metabolismo , Comportamento Sexual Animal/fisiologia , Envelhecimento , Comunicação Animal , Animais , Feminino , Masculino , Modelos Biológicos
14.
Nat Commun ; 14(1): 1101, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843121

RESUMO

Animals tend to decrease in body size (Bergmann's rule) and elongate appendages (Allen's rule) in warm climates. However, it is unknown whether these patterns depend on each other or constitute independent responses to the thermal environment. Here, based on a global phylogenetic comparative analysis across 99.7% of the world's bird species, we show that the way in which the relative length of unfeathered appendages co-varies with temperature depends on body size and vice versa. First, the larger the body, the greater the increase in beak length with temperature. Second, the temperature-based increase in tarsus length is apparent only in larger birds, whereas in smaller birds, tarsus length decreases with temperature. Third, body size and the length of beak and tarsus interact with each other to predict the species' environmental temperature. These findings suggest that the animals' body size and shape are products of an evolutionary compromise that reflects distinct alternative thermoregulatory adaptations.


Assuntos
Evolução Biológica , Aves , Animais , Filogenia , Temperatura , Regulação da Temperatura Corporal , Tamanho Corporal
15.
BMC Evol Biol ; 12: 182, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22978363

RESUMO

BACKGROUND: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. RESULTS: We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. CONCLUSIONS: Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.


Assuntos
Liliaceae/química , Liliaceae/genética , Filogenia , Plantas Medicinais/química , Plantas Medicinais/genética , Alcaloides/química , Alcaloides/genética , Alcaloides/farmacologia , Animais , Teorema de Bayes , Núcleo Celular/genética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , DNA Mitocondrial/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Electrophorus , Ratos , Análise de Sequência de DNA , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
16.
Nat Commun ; 13(1): 4727, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953489

RESUMO

Bergmann's and Allen's rules state that endotherms should be larger and have shorter appendages in cooler climates. However, the drivers of these rules are not clear. Both rules could be explained by adaptation for improved thermoregulation, including plastic responses to temperature in early life. Non-thermal explanations are also plausible as climate impacts other factors that influence size and shape, including starvation risk, predation risk, and foraging ecology. We assess the potential drivers of Bergmann's and Allen's rules in 30 shorebird species using extensive field data (>200,000 observations). We show birds in hot, tropical northern Australia have longer bills and smaller bodies than conspecifics in temperate, southern Australia, conforming with both ecogeographical rules. This pattern is consistent across ecologically diverse species, including migratory birds that spend early life in the Arctic. Our findings best support the hypothesis that thermoregulatory adaptation to warm climates drives latitudinal patterns in shorebird size and shape.


Assuntos
Aclimatação , Clima , Animais , Aves , Tamanho Corporal/fisiologia , Temperatura
17.
Insects ; 12(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498821

RESUMO

Many forms of polygyny are observed across different animal groups. In some species, groups of females may remain with a single male for breeding, often referred to as "harem polygyny". The environment and the amount of habitat available for feeding, mating and oviposition may have an effect on the formation of harems. We aimed to determine how the surrounding environment (a harvested or unharvested pine plantation) and availability of local substrate affect the harems of the bark beetle, Ips grandicollis (Coleoptera: Curculionidae: Scolytinae). In a harvested pine plantation with large amounts of available habitat, the population density of these beetles is much higher than in unharvested plantations. We found the number of females per male to be significantly greater in the harvested plantation than the unharvested one. Additionally, the amount of substrate available in the immediate local vicinity (the number of logs in replicate piles) also influences the number of beetles attracted to a log and size of individual harems. We also examined how females were distributing themselves in their galleries around the males' nuptial chamber, as previous work has demonstrated the potential for competition between neighbouring females and their offspring. Females do not perform clumping, suggesting some avoidance when females make their galleries, but they also do not distribute themselves evenly. Female distribution around the male's nuptial chamber appears to be random, and not influenced by other females or external conditions.

18.
Mycologia ; 113(6): 1123-1135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34494944

RESUMO

Agaricus xanthodermus and other species of the yellow-staining section Xanthodermatei are responsible for mushroom-related poisoning cases that require treatment. However, longstanding anecdotal evidence indicates that this species appears to exhibit considerable variation in toxicity, resulting in gastrointestinal irritation of varying severity in most cases. We quantified the amount of phenol, hydroquinone, and catechol in mushrooms using a novel protocol for gas chromatography-mass spectrometry (GC-MS) and investigated their levels in different basidiomatal structures, different developmental stages, and on different nutritional substrates. Phenol concentration was greater in the pileus than the stipe, in mature compared with immature basidiomata, and in basidiomata occurring in woody mulch versus lawns. Variation in toxicity is suggested to be due in part to variation in phenol concentration, developmental stage and tissue type consumed, and substrate. Variation in human sensitivity to simple phenols may also play a role but was not formally investigated in this study.


Assuntos
Agaricus , Fenol , Austrália , Humanos , Fenol/análise , Fenóis
19.
Trends Ecol Evol ; 36(11): 1036-1048, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507845

RESUMO

Many animal appendages, such as avian beaks and mammalian ears, can be used to dissipate excess body heat. Allen's rule, wherein animals in warmer climates have larger appendages to facilitate more efficient heat exchange, reflects this. We find that there is widespread evidence of 'shape-shifting' (changes in appendage size) in endotherms in response to climate change and its associated climatic warming. We re-examine studies of morphological change over time within a thermoregulatory context, finding evidence that temperature can be a strong predictor of morphological change independently of, or combined with, other environmental changes. Last, we discuss how Allen's rule, the degree of temperature change, and other ecological factors facilitate morphological change and make predictions about what animals will show shape-shifting.


Assuntos
Aves , Regulação da Temperatura Corporal , Animais , Tamanho Corporal , Regulação da Temperatura Corporal/fisiologia , Mudança Climática , Mamíferos , Temperatura
20.
Evolution ; 75(11): 2802-2815, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464452

RESUMO

Hoverflies (Diptera: Syrphidae) provide an excellent opportunity to study the evolution of Batesian mimicry, where defenseless prey avoid predation by evolving to resemble defended "model" species. Although some hoverflies beautifully resemble their hymenopteran models, others seem to be poor mimics or are apparently nonmimetic. The reasons for this variation are still enigmatic despite decades of research. Here, we address this issue by mapping social-wasp mimicry across the phylogeny of Holarctic hoverflies. Using the "distance transform" technique, we calculate an objective measure of the abdominal pattern similarity between 167 hoverfly species and a widespread putative model, the social wasp, Vespula germanica. We find that good wasp mimicry has evolved several times, and may have also been lost, leading to the presence of nonmimics deep within clades of good mimics. Body size was positively correlated with similarity to the model, supporting previous findings that smaller species are often poorer mimics. Additionally, univoltine species were less accurate wasp mimics than multivoltine and bivoltine species. Hence, variation in the accuracy of Batesian mimics may reflect variation in the opportunity for selection caused by differences in prey value or signal perception (influenced by body size) and phenology or generation time (influenced by voltinism).


Assuntos
Mimetismo Biológico , Vespas , Animais , Vespas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA