RESUMO
There is increased interest in rearing salmon in Recirculating Aquaculture Systems (RAS), where environmental conditions can be tightly controlled to optimize growth. Photoperiod and salinity are two important parameters that can be manipulated in RAS. A longer photoperiod permits more time for feeding, while intermediate salinities may reduce the energetic costs of ionoregulation, both of which may enhance growth. However, little is known about how rearing at different photoperiods and salinity affect behaviour, an understudied but important research topic for intensive fish rearing. To address this, we examined the behavioural effects of two salinities and two photoperiod regimes in coho salmon (Oncorhynchus kisutch) post-smolts reared continuously for 120 days in a RAS. Fish were reared on a photoperiod of either 12 h light:12 h dark (12:12), or 24 h light (24:0) at salinities of 2.5 and 10 ppt. To investigate behavioural differences associated with these treatments, we quantified: i) movement in an open-field test, ii) exploratory behaviour/boldness using a novel object approach test, and iii) anxiety-like behaviour with a light/dark test. The 24:0 groups displayed no differences in boldness/anxiety-like behaviour and locomotion relative to the 12:12 groups at their respective salinities. Taken together, fish reared under continuous light (24:0) show negligible behavioural alterations compared to fish reared under normal light dark conditions (12:12).
Assuntos
Aquicultura/métodos , Oncorhynchus kisutch/fisiologia , Fotoperíodo , Animais , Ansiedade , Aquicultura/instrumentação , Comportamento Animal , Ambiente Controlado , Locomoção , Oncorhynchus kisutch/crescimento & desenvolvimento , SalinidadeRESUMO
Terpenes are fragrant aromatic compounds produced by a variety of plants, most notably cannabis and hops. With increasing legalization of cannabis there is a need to better understand the behavioural effects of terpenes and ultimately their therapeutic value. Our study investigated the dose-dependent impact of three terpenes (limonene 0.25, 0.5, 0.75%; ß-myrcene 0.001, 0.01, 0.1%; and 0.0001, 0.001, 0.00125% linalool) on zebrafish (Danio rerio) behaviour when exposed both acutely and repeatedly over a 7-day period. Anxiety-like behaviour, boldness, and locomotion were assessed using the open field test and the novel object approach test. In the acute dosing experiment, limonene and ß-myrcene exposed groups demonstrated a significant decrease in locomotion, a decrease in anxiety-like behaviour, and an increase in boldness, while linalool treatment groups demonstrated only minor alterations in locomotion. Moreover, repeated exposure to limonene (0.39%) or ß-myrcene (0.0083%) for a seven day period did not result in any significant behavioural effects. In conclusion, our study provides support for an anxiolytic and sedative effect in zebrafish in response to acute limonene and ß-myrcene exposure that is no longer present after one week of repeated exposure.
Assuntos
Monoterpenos Acíclicos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Limoneno/administração & dosagem , Animais , Ansiolíticos/administração & dosagem , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Cannabis/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Humanos , Hipnóticos e Sedativos/administração & dosagem , Locomoção/efeitos dos fármacos , Peixe-ZebraRESUMO
Toxicants are commonly administered to experimental organisms using solvents as vehicles. One common vehicle for dissolving toxicants is methanol (CH3OH), a solvent which on its own is capable of altering physiology and behavior high concentrations. This dataset describes behavioral results in zebrafish (Danio rerio) individually exposed to methanol (0.25%, 2.5% vol/vol), or control water, for 30 min prior to behavioral testing. Zebrafish were placed into an open field arena to examine locomotion and zone preference, which was recorded and quantified with motion-tracking software (EthoVision XT). Time spent in the outer ("thigmotaxis") zone of the arena is a proxy for increased anxiety-like behavior in zebrafish. Additionally, a novel object was placed into the center of the arena to quantify relative increases in boldness/exploration between the methanol and control groups. There were no differences in time spent in any zone of the arena or distance travelled between either group, in either test.
RESUMO
Environmental exposure to crude oil and/or its derivatives in fishes can negatively impact survival, morphology and physiology, but relatively little focus has been on behavior. Exposures can influence prey-predator interactions, courtship and other vital behaviors, leading to individual or population disruption at toxicant levels well below those producing morphological or physiological changes. The few behavioral studies of polycyclic aromatic hydrocarbons (PAHs) on fish behavior have yielded highly inconsistent results, likely relating to chronic vs. acute treatment. A few studies report lethargy and decreased exploratory behavior, while others indicate increased anxiety and greater exploratory behavior with PAH exposure. In our study on zebrafish (Danio rerio), we hypothesized that even relatively brief (30 min) exposure to the PAH benzo[a]pyrene (B[a]P) would impact group shoaling and individual behaviors in open field and novel object exploration tests. Exposures comprised measured concentrations of 1.0 µM, 10 µM, or 100 µM, B[a]P. Compared to controls, inter-individual distance (IID) was significantly increased by 100 µM B[a]P, but not by 1.0 µM or 10 µM B[a]P. Total distance moved by shoals was decreased significantly at B[a]P concentrations of 1.0 µM, 10 µM and 100 µM. In the open field test of individual locomotion and anxiety-like behavior, time spent in the thigmotaxis zone along the walls of the circular test arena (a proxy for anxiety-like behavior), was decreased at 100 µM. In the novel object approach test to investigate boldness, time spent near the object was significantly increased by both 10 µM and 100 µM B[a]P. Collectively, these data indicate a complex suite of changes in zebrafish including altered shoal dynamics, decreased anxiety, increased boldness, and decreased locomotion associated with exposure to B[a]P.