Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555352

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor. Recently, agents increasing the level of oxidative stress have been proposed as anticancer drugs. However, their efficacy may be lowered by the cytoprotective activity of antioxidant enzymes, often upregulated in neoplastic cells. Here, we assessed the mRNA and protein expression of thioredoxin reductase 1 (TrxR1), a master regulator of cellular redox homeostasis, in GBM and non-tumor brain tissues. Next, we examined the influence of an inhibitor of TrxR1, auranofin (AF), alone or in combination with a prooxidant menadione (MEN), on growth of GBM cell lines, patient-derived GBM cells and normal human astrocytes. We detected considerable amount of TrxR1 in the majority of GBM tissues. Treatment with AF decreased viability of GBM cells and their potential to form colonies and neurospheres. Moreover, it increased the intracellular level of reactive oxygen species (ROS). Pre-treatment with ROS scavenger prevented the AF-induced cell death, pointing to the important role of ROS in the reduction of cell viability. The cytotoxic effect of AF was potentiated by treatment with MEN. In conclusion, our results identify TrxR1 as an attractive drug target and highlights AF as an off-patent drug candidate in GBM therapy.


Assuntos
Glioblastoma , Vitamina K 3 , Humanos , Vitamina K 3/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Morte Celular , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Sobrevivência Celular
2.
Bioorg Chem ; 105: 104362, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33074121

RESUMO

In spite of progress in understanding biology of glioblastoma (GBM), this tumor remains incurable with a median survival rate of 15 months. Previous studies have shown that 2-(4-fluorophenyloamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (FPDT) and 2-(3-chlorophenyloamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (CPDT) diminished viability of cancer cell lines of different origin. In the current study, we have examined activity of these compounds in several GBM cell lines and patient-derived GBM cells. We have also designed, synthesized and evaluated anti-GBM activity of novel 1,3,4-thiadiazole derivatives containing additional Cl or CH2CH3 substitute at C5-position of 2,4-dihydroxyphenyl. The tested compounds presented a considerable cytotoxicity against all GBM cell lines examined as well as patient-derived GBM cells. They were 15-110 times more potent than temozolomide, the first-line chemotherapeutic agent for GBM. Notably, in anticancer concentrations three of the derivatives were not toxic to human astrocytes. FPDT appeared to be the most promising compound with IC50 values between 45 µM and 68 µM for GBM cells and >100 µM for astrocytes. It augmented activity of temozolomide and inhibited proliferation migration and invasion of GBM cells. Treatment with FPDT diminished phosphorylation level of GSK3ß and AKT. Pretreatment with PDGF-BB, an AKT activator, partially protected cells from death caused by FPDT, indicating that FPDT-mediated decrease in cell viability is causatively related to the inhibition of the AKT pathway.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química
3.
Neurochem Res ; 42(3): 918-924, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27568206

RESUMO

Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 ß (GSK3ß), a target of AKT. In this review we focus on the function of AKT/GSK3ß signaling in GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Terapia de Alvo Molecular , Transdução de Sinais
4.
Appl Microbiol Biotechnol ; 101(3): 1099-1110, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27660179

RESUMO

Analysis of autolysis of derivatives of Lactococcus lactis subsp. cremoris MG1363 and subsp. lactis IL1403, both lacking the major autolysin AcmA, showed that L. lactis IL1403 still lysed during growth while L. lactis MG1363 did not. Zymographic analysis revealed that a peptidoglycan hydrolase activity of around 30 kDa is present in cell extracts of L. lactis IL1403 that could not be detected in strain MG1363. A comparison of all genes encoding putative peptidoglycan hydrolases of IL1403 and MG1363 led to the assumption that one or more of the 99 % homologous 27.9-kDa endolysins encoded by the prophages bIL285, bIL286 and bIL309 could account for the autolysis phenotype of IL1403. Induced expression of the endolysins from bIL285, bIL286 or bIL309 in L. lactis MG1363 resulted in detectable lysis or lytic activity. Prophage deletion and insertion derivatives of L. lactis IL1403 had a reduced cell lysis phenotype. RT-qPCR and zymogram analysis showed that each of these strains still expressed one or more of the three phage lysins. A homologous gene and an endolysin activity were also identified in the natural starter culture L. lactis subsp. cremoris strains E8, Wg2 and HP, and the lytic activity could be detected under growth conditions that were identical as those used for IL1403. The results presented here show that these endolysins of L. lactis are expressed during normal growth and contribute to autolysis without production of (lytic) phages. Screening for natural strains expressing homologous endolysins could help in the selection of strains with enhanced autolysis and, thus, cheese ripening properties.


Assuntos
Bacteriólise , Endopeptidases/genética , Lactococcus lactis/fisiologia , Prófagos/genética , Queijo/microbiologia , Endopeptidases/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/virologia , Muramidase/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência
5.
Mol Carcinog ; 55(9): 1309-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26258493

RESUMO

Human phosphate-activated glutaminase (GA) is encoded by two genes: GLS and GLS2. Glioblastomas (GB) usually lack GLS2 transcripts, and their reintroduction inhibits GB growth. The GLS2 gene in peripheral tumors may be i) methylation- controlled and ii) a target of tumor suppressor p53 often mutated in gliomas. Here we assessed the relation of GLS2 downregulation in GB to its methylation and TP53 status. DNA demethylation with 5-aza-2'-deoxycytidine restored GLS2 mRNA and protein content in human GB cell lines with both mutated (T98G) and wild-type (U87MG) p53 and reduced the methylation of CpG1 (promoter region island), and CpG2 (first intron island) in both cell lines. In cell lines and clinical GB samples alike, methylated CpG islands were detected both in the GLS2 promoter (as reported earlier) and in the first intron of this gene. CpG methylation of either island was absent in GLS2-expressing non-tumoros brain tissues. Screening for mutation in the exons 5-8 of TP53 revealed a point mutation in only one out of seven GB examined. In conclusion, aberrant methylation of CpG islands, appear to contribute to silencing of GLS2 in GB by a mechanism bypassing TP53 mutations. © 2015 Wiley Periodicals, Inc.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glutaminase/genética , Proteína Supressora de Tumor p53/genética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Regulação para Baixo , Epigênese Genética , Genes p53 , Humanos , Mutação Puntual , Regiões Promotoras Genéticas
6.
Neurochem Res ; 41(1-2): 101-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26471164

RESUMO

Recent studies have demonstrated elevated levels of iron (Fe) in brains of patients with Huntington's disease (HD). Striatal cells carrying mutated Huntingtin presented increased sensitivity to cadmium (Cd) toxicity, decreased sensitivity to manganese (Mn) toxicity and deficits in Mn uptake. The hypothesis arose that the observed alterations result from the altered expression and/or activity of proteins engaged in the transport of these metals, that is: transferrin (TF), transferrin receptor (TFR), divalent metal transporter 1 (DMT1) and ZIP8 protein. Here we examined the expression levels of genes encoding these proteins in blood of HD patients and control subjects. A decreasing tendency in the level of TF transcript and increasing tendency of SLC11A2 mRNA encoding DMT1 was observed in the blood of HD patients compared to the control subjects, but neither attained statistical significance. No changes were found in the levels of TFRC coding for TFR and SLC39A8 coding for ZIP8 between HD patients and controls. The results indicate that HD-associated changes in metal homeostasis occur are not related to mechanisms other than the expression level of the here analyzed metal transporters.


Assuntos
Doença de Huntington/sangue , Proteínas de Membrana Transportadoras/genética , Metais/metabolismo , RNA/sangue , Adulto , Idoso , Feminino , Humanos , Doença de Huntington/genética , Masculino , Pessoa de Meia-Idade
7.
Exp Mol Pathol ; 100(1): 74-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581715

RESUMO

Glutamine (Gln) is a crucial metabolite in cancer cells of different origin, and the expression and activity of different isoforms of the Gln-degrading enzyme, glutaminase (GA), have variable implications for tumor growth and metabolism. Human glutaminases are encoded by two genes: the GLS gene encodes the kidney-type glutaminases, KGA and GAC, while the GLS2 gene encodes the liver-type glutaminases, GAB and LGA. Recent studies suggest that the GAC isoform and thus high GAC/KGA ratio, are characteristic of highly proliferating tumors, while GLS2 proteins have an inhibitory effect on tumor growth. Here we analyzed the expression levels of distinct GA transcripts in 7 gastroenteropancreatic neuroendocrine tumors (GEP-NETs) with low proliferation index and 7 non-neoplastic tissues. GEP-NETs overexpressed KGA, while GAC, which was the most abundant isoform, was not different from control. The expression of the GLS2 gene showed tendency towards elevation in GEP-NETs compared to control. Collectively, the expression pattern of GA isoforms conforms to the low proliferative capacity of GEP-NETs encompassed in this study.


Assuntos
Proliferação de Células , Glutaminase/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Mensageiro/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adulto , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Pessoa de Meia-Idade , Isoformas de Proteínas
8.
Tumour Biol ; 35(3): 1855-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24096582

RESUMO

Glutamine (Gln) metabolism, initiated by its degradation by glutaminases (GA), is elevated in neoplastic cells and tissues. In malignant glia-derived tumors, GA isoforms, KGA and GAC, coded by the GLS gene, are overexpressed, whereas the GLS2-coded GAB and LGA isoforms, are hardly detectable in there. Our previous study revealed that transfection of T98G glioblastoma cells with GAB reduced cell proliferation and migration, by a yet unknown mechanism not related to Gln degradation. The question arose how simultaneous overexpression of GAB and inhibition of KGA would affect glioblastoma cell growth. Here, we used siRNA to silence the expression of Gls in T98G cells which were or were not stably transfected with GAB (TGAB cells). In both T98G and TGAB cell lines, silencing of Gls with siRNAs targeted at different sequences decreased cell viability and proliferation in a different, sequence-dependent degree, and the observed decreases were in either cell line highly correlated with increase of intracellular Gln (r > 0.9), a parameter manifesting decreased Gln degradation. The results show that combination of negative modulation of GA isoforms arising from GLS gene with the introduction of the GLS2 gene product, GAB, may in the future provide a useful means to curb glioblastoma growth in situ. At the same time, the results underscore the critical role of Gln degradation mediated by KGA in the manifestations of aggressive glial tumor phenotype.


Assuntos
Proliferação de Células , Glioblastoma/enzimologia , Glioblastoma/genética , Glutaminase/genética , Glutaminase/metabolismo , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Inativação Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
9.
Pharmacol Rep ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259492

RESUMO

Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Gliomas, malignant brain tumors with a dismal prognosis, alter glutamate homeostasis in the brain, which is advantageous for their growth, survival, and invasion. Alterations in glutamate homeostasis result from its excessive production and release to the extracellular space. High glutamate concentration in the tumor microenvironment destroys healthy tissue surrounding the tumor, thus providing space for glioma cells to expand. Moreover, it confers neuron hyperexcitability, leading to epilepsy, a common symptom in glioma patients. This mini-review briefly describes the biochemistry of glutamate production and transport in gliomas as well as the activation of glutamate receptors. It also summarizes the current pre-clinical and clinical studies identifying pharmacotherapeutics targeting glutamate transporters and receptors emerging as potential therapeutic strategies for glioma.

10.
Cancers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067269

RESUMO

In rapidly proliferating cancer cells, glutamine is a major source of energy and building blocks. Increased glutamine uptake and enhanced glutaminolysis are key metabolic features of many cancers. Glutamine is metabolized by glutaminase (GA), which is encoded by two genes: GLS and GLS2. In contrast to isoforms arising from the GLS gene, which clearly act as oncoproteins, the role of GLS2 products in tumorigenesis is far from well understood. While in some cancer types GLS2 is overexpressed and drives cancer development, in some other types it is downregulated and behaves as a tumor suppressor gene. In this review, we describe the essential functions and regulatory mechanisms of human GLS2 and the cellular compartments in which GLS2 has been localized. Furthermore, we present the context-dependent oncogenic and tumor-suppressor properties of GLS2, and delve into the mechanisms underlying these phenomena.

11.
Cells ; 12(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566013

RESUMO

Compounds that cause oxidative stress have recently gained considerable interest as potential anticancer treatment modalities. Nevertheless, their efficiency may be diminished by the antioxidant systems often upregulated in cancer cells. Peroxiredoxins (PRDXs) are antioxidant enzymes that scavenge peroxides and contribute to redox homeostasis. They play a role in carcinogenesis and are upregulated in several cancer types. Here, we assessed the expression pattern of PRDX1 and PRDX2 in glioblastoma (GBM) and examined the efficacy of their inhibitors in GBM cell lines and patient-derived GBM cells. Both PRDX1 and PRDX2 were upregulated in GBM compared to non-tumor brain tissues and their considerable amounts were observed in GBM cells. Adenanthin, a compound inhibiting PRDX1 activity, slightly decreased GBM cell viability, while conoidin A (CONA), a covalent PRDX2 inhibitor, displayed high toxicity in GBM cells. CONA elevated the intracellular reactive oxygen species (ROS) level. Pre-treatment with an ROS scavenger protected cells from CONA-induced death, indicating that ROS accumulation plays a crucial role in this phenomenon. Menadione or celecoxib, both of which are ROS-inducing agents, potentiated the anticancer activity of CONA. Collectively, our results unveil PRDX1 and PRDX2 as potential targets for GBM therapy, and substantiate the further exploration of their inhibitors.


Assuntos
Glioblastoma , Peroxirredoxinas , Humanos , Antioxidantes/metabolismo , Glioblastoma/tratamento farmacológico , Peroxirredoxinas/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
12.
J Neurochem ; 123(3): 428-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22888977

RESUMO

O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA-repair protein promoting resistance of tumor cells to alkylating chemotherapeutic agents. Glioma cells are particularly resistant to this class of drugs which include temozolomide (TMZ) and carmustine (BCNU). A previous study using the RNA microarray technique showed that decrease of MGMT mRNA stands out among the alterations in gene expression caused by the cell growth-depressing transfection of a T98G glioma cell line with liver-type glutaminase (LGA) [Szeliga et al. (2009) Glia, 57, 1014]. Here, we show that stably LGA-transfected cells (TLGA) exhibit decreased MGMT protein expression and activity as compared with non-transfected or mock transfected cells (controls). However, the decrease of expression occurs in the absence of changes in the methylation of the promoter region, indicating that LGA circumvents, by an as yet unknown route, the most common mechanism of MGMT silencing. TLGA turned out to be significantly more sensitive to treatment with 100-1000 µM of TMZ and BCNU in the acute cell growth inhibition assay (MTT). In the clonogenic survival assay, TLGA cells displayed increased sensitivity even to 10 µM TMZ and BCNU. Our results indicate that enrichment with LGA, in addition to inhibiting glioma growth, may facilitate chemotherapeutic intervention.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/enzimologia , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/enzimologia , Transaminases/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Metilases de Modificação do DNA/biossíntese , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Enzimas Reparadoras do DNA/biossíntese , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Fígado/enzimologia , Transaminases/fisiologia , Transfecção/métodos , Proteínas Supressoras de Tumor/biossíntese
13.
Neurochem Int ; 153: 105256, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968631

RESUMO

Gliomas are a histologically and molecularly heterogeneous group of neoplasms accounting for 80% of malignant primary brain tumors. Growing evidence suggests that production of reactive oxygen species (ROS) is linked to glioma pathogenesis, although it is still unclear whether it is a cause or an effect of this process. Peroxiredoxins (PRDXs), a family of six antioxidant proteins, may promote or inhibit carcinogenesis, depending on the tumor type and stage. The current knowledge on their expression, regulation and functions in glioma is scarce. In this study, a comprehensive analysis of PRDXs expression in distinct glioma subtypes and non-tumor brain tissues was conducted using gene expression data from The Cancer Genome Atlas (TCGA), REpository for Molecular BRAin NeoplasiaDaTa (REMBRANDT), The Chinese Glioma Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. The association between gene expression and patient survival was investigated. DNA methylation, mutations, copy number alterations of deregulated PRDXs as well as the correlation between gene expression and tumor-infiltrating immune cells were assessed. The analysis revealed overexpression of PRDX1, PRDX4, and PRDX6 in most histological glioma types compared to the non-tumor tissues, while PRDX2, PRDX3 and PRDX5 expression remained unaltered. The expression of PRDX4 and PRDX6 was higher in mesenchymal than proneural and classical glioma subtypes. Moreover, lower expression of PRDX1, PRDX4 and PRDX6 was observed in tumors with a glioma CpG island methylator phenotype (G-CIMP) compared to non-G-CIMP tumors, as well as in isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted gliomas compared to the wild-type counterparts. High expression of PRDX1, PRDX4 or PRDX6 correlated with poor survival of glioma patients. PRDX1 and PRDX6 displayed a positive correlation with different immune cell population in low grade gliomas and, to a lesser extent, in glioblastoma. PRDX1 expression exhibited negative correlation with DNA methylation. These results indicate that high expression of PRDX1, PRDX4 and PRDX6 is associated with poor outcome in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioblastoma/patologia , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Prognóstico
14.
Biomolecules ; 12(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009010

RESUMO

BACKGROUND: Due to resistance to conventional therapy, a blood-brain barrier that results in poor drug delivery, and a high potential for metastasis, glioblastoma (GBM) presents a great medical challenge. Since the repertoire of the possible therapies is very limited, novel therapeutic strategies require new drugs as well as new approaches. The multiple roles played by L-tryptophan (Trp) in tumorigenesis of GBM and the previously found antiproliferative properties of Trp-bearing dendrimers against this malignancy prompted us to design novel polyfunctional peptide-based dendrimers covalently attached to N1-alkyl tryptophan (Trp) residues. Their antiproliferative properties against GBM and normal human astrocytes (NHA) and their antioxidant potential were tested. METHODS: Two groups of amphiphilic peptide dendrimers terminated with N1-butyl and N1-aminopentane tryptophan were designed. The influence of dendrimers on viability of NHA and human GBM cell lines, displaying different genetic backgrounds and tumorigenic potentials, was determined by the MTT test. The influence of compounds on the clonogenic potential of GBM cells was assessed by colony-formation assay. Dendrimers were tested for radical scavenging potency as well as redox capability (DPPH, ABTS, and FRAP models). RESULTS: Several peptide dendrimers functionalized with N1-alkyl-tryptophan at 5 µM concentration exhibited high selectivity towards GBM cells retaining 85-95% viable NHA cells while killing cancer cells. In both the MTT and colony-formation assays, compounds 21 (functionalized with N1-butyl-Trp and (+)8 charged) and 25 (functionalized with N1-aminopentane-Trp and (+)12 charged) showed the most promise for their development into anticancer drugs. According to ABTS, DPPH, and FRAP antioxidant tests, dendrimers functionalized with N1-alkylated Trp expressed higher ROS-scavenging capacity (ABTS and DPPH) than those with unsubstituted Trp. CONCLUSIONS: Peptide dendrimers functionalized with N1-alkyl-tryptophan showed varying toxicity to NHA, while all were toxic to GBM cells. Based on their activity towards inhibition of GBM viability and relatively mild effect on NHA cells the most advantageous were derivatives 21 and 25 with the respective di-dodecyl and dodecyl residue located at the C-terminus. As expected, peptide dendrimers functionalized with N1-alkyl-tryptophan expressed higher scavenging potency against ROS than dendrimers with unsubstituted tryptophan.


Assuntos
Dendrímeros , Glioblastoma , Antioxidantes , Linhagem Celular Tumoral , Dendrímeros/química , Glioblastoma/tratamento farmacológico , Humanos , Peptídeos/química , Peptídeos/farmacologia , Espécies Reativas de Oxigênio , Triptofano/química , Triptofano/farmacologia
15.
J Neurosci Res ; 89(12): 2018-27, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21538466

RESUMO

Brain edema in acute hepatic encephalopathy (HE) is due mainly to swelling of astrocytes. Efflux of potassium is implicated in the prevention of glial swelling under hypoosmotic conditions. We investigated whether pathogenic factors of HE, glutamine (Gln) and/or ammonia, induce alterations in the expression of glial potassium channels (Kir4.1, Kir2.1) and Na(+) -K(+) -2Cl(-) cotransporter-1 (NKCC1) in rat cerebral cortex and cultured rat cortical astrocytes and whether these alterations have consequences for potassium efflux and astrocytic swelling. Thioacetamide-induced acute liver failure in rats resulted in significant decreases in the Kir4.1 mRNA and protein contents of cerebral cortex, whereas expression of Kir2.1 and NKCC1 remained unaltered. Incubation of primary cortical astrocytes for 72 hr in the presence of Gln (5 mM), but not of ammonia (5 mM or 10 mM), induced a decrease in the levels of Kir4.1 mRNA and protein. Similarly to incubation with Gln, reduction of Kir4.1 mRNA expression by RNA interference caused swelling of astrocytes as shown by confocal imaging followed by 3D computational analysis. Gln reduced the astrocytic uptake of D-[(3) H]aspartate, but, in contrast to the earlier reported effect of ammonia, this reduction was not accompanied by decreased expression of the astrocytic glutamate transporter GLT-1 mRNA. Both Gln and ammonia decreased hypoosmolarity-induced (86) Rb efflux from the cells, but the effect was more pronounced with Gln. The results indicate that down-regulation of Kir4.1 may mediate distinct aspects of Gln-induced astrocytic dysfunction in HE.


Assuntos
Astrócitos/metabolismo , Encefalopatia Hepática/metabolismo , Falência Hepática/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Western Blotting , Células Cultivadas , Córtex Cerebral/metabolismo , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/biossíntese , Glutamina/farmacologia , Encefalopatia Hepática/patologia , Masculino , Ratos , Ratos Long-Evans , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores de Cloreto de Sódio-Potássio/biossíntese , Membro 2 da Família 12 de Carreador de Soluto
16.
Adv Med Sci ; 66(1): 199-205, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33711670

RESUMO

Nitric oxide (NO) and polyamines: putrescine, spermidine and spermine, are key arginine metabolites in mammalian tissues that play critical roles i.a. in regulation of vascular tone (NO), and cell cycle regulation (polyamines). In the brain, both classes of molecules additionally have neuromodulatory and neuroprotective potential, and NO also a neurotoxic potential. Here we review evidence that brain tumors use the NO- and polyamine-synthesizing machineries to the benefit of their differentiation and growth from healthy glia and neurons. With a few exceptions, brain tumors show increased activities of one or all of the three arginine (Arg) to NO-converting nitric oxide synthase (NOS) isoforms (iNOS, eNOS, nNOS), but also elevated activities of polyamines-generating and modifying enzymes: arginase I/II, ornithine decarboxylase and spermidine/spermine N1-acetyltransferase. The degree of stimulation of NO- and polyamine synthesis often correlates with brain tumor malignancy. Excess NO, but also spermine, spermidine and their N1-acetylated forms, are tumor- and context-dependently involved in angiogenesis, tumor initiation and growth, and resistance to chemo- or radiotherapy. Hypothetically, increased demand for NO and/or polyamines is likely to contribute to Arg auxotrophy of malignant brain tumors, albeit the causal nexus awaits experimental verification.


Assuntos
Arginina/deficiência , Neoplasias Encefálicas/patologia , Óxido Nítrico/metabolismo , Poliaminas/metabolismo , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/metabolismo , Humanos
17.
Biomolecules ; 11(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804286

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). Neuroblastoma (NB) is one of the most common cancers of childhood derived from the neural crest cells. The survival rate for patients with GBM and high-risk NB is poor; therefore, novel therapeutic approaches are needed. Increasing evidence suggests a dual role of redox-active compounds in both tumorigenesis and cancer treatment. Therefore, in this study, polyfunctional peptide-based dendrimeric molecules of the bola structure carrying residues with antiproliferative potential on one side and the antioxidant residues on the other side were designed. METHODS: We synthesized non-symmetric bola dendrimers and assessed their radical scavenging potency as well as redox capability. The influence of dendrimers on viability of rat primary cerebellar neurons (CGC) and normal human astrocytes (NHA) was determined by propidium iodide staining and cell counting. Cytotoxicity against human GBM cell lines, T98G and LN229, and NB cell line SH-SY5Y was assessed by cell counting and colony forming assay. RESULTS: Testing of CGC and NHA viability allowed to establish a range of optimal dendrimers structure and concentration for further evaluation of their impact on two human GBM and one human NB cell lines. According to ABTS, DPPH, FRAP, and CUPRAC antioxidant tests, the most toxic for normal cells were dendrimers with high charge and an excess of antioxidant residues (Trp and PABA) on both sides of the bola structure. At 5 µM concentration, most of the tested dendrimers neither reduced rat CGC viability below 50-40%, nor harmed human neurons (NHA). The same dose of compounds 16 or 22, after 30 min treatment decreased the number of SH-SY5Y and LN229 cells, but did not affect the number of T98G cells 48 h post treatment. However, either compound significantly reduced the number of colonies formed by SH-SY5Y, LN229, and T98G cells measured 14 days after treatment. CONCLUSIONS: Peptide dendrimers with non-symmetric bola structure are excellent scaffolds for design of molecules with pro/antioxidant functionality. Design of molecules with an excess of positive charges and antioxidant residues rendered molecules with high neurotoxicity. Single, 30 min exposition of the GBM and NB cell lines to the selected bola dendrimers significantly suppressed their clonogenic potential.


Assuntos
Dendrímeros/química , Glioblastoma/patologia , Neuroblastoma/patologia , Peptídeos/química , Animais , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/síntese química , Sequestradores de Radicais Livres/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Triptofano/química
18.
Antioxidants (Basel) ; 9(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265993

RESUMO

Substantial evidence indicates that oxidative/nitrosative stress contributes to the neurodegenerative diseases. Peroxiredoxins (PRDXs) are one of the enzymatic antioxidant mechanisms neutralizing reactive oxygen/nitrogen species. Since mammalian PRDXs were identified 30 years ago, their significance was long overshadowed by the other well-studied ROS/RNS defense systems. An increasing number of studies suggests that these enzymes may be involved in the neurodegenerative process. This article reviews the current knowledge on the expression and putative roles of PRDXs in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies, multiple sclerosis, amyotrophic lateral sclerosis and Huntington's disease.

19.
Pharmacol Rep ; 72(5): 1079-1100, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32880874

RESUMO

In spite of substantial progress made toward understanding cancer pathogenesis, this disease remains one of the leading causes of mortality. Thus, there is an urgent need to develop novel, more effective anticancer therapeutics. Thiadiazole ring is a versatile scaffold widely studied in medicinal chemistry. Mesoionic character of this ring allows thiadiazole-containing compounds to cross cellular membrane and interact strongly with biological targets. Consequently, these compounds exert a broad spectrum of biological activities. This review presents the current state of knowledge on thiadiazole derivatives that demonstrate in vitro and/or in vivo efficacy across the cancer models with an emphasis on targets of action. The influence of the substituent on the compounds' activity is depicted. Furthermore, the results from clinical trials assessing thiadiazole-containing drugs in cancer patients are summarized.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Animais , Membrana Celular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/metabolismo
20.
Cancers (Basel) ; 12(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013066

RESUMO

The most common malignant brain tumors are those of astrocytic origin, gliomas, with the most aggressive glioblastoma (WHO grade IV) among them. Despite efforts, medicine has not made progress in terms of the prognosis and life expectancy of glioma patients. Behind the malignant phenotype of gliomas lies multiple genetic mutations leading to reprogramming of their metabolism, which gives those highly proliferating cells an advantage over healthy ones. The so-called glutamine addiction is a metabolic adaptation that supplements oxidative glycolysis in order to secure neoplastic cells with nutrients and energy in unfavorable conditions of hypoxia. The present review aims at presenting the research and clinical attempts targeting the different metabolic pathways involved in glutamine metabolism in gliomas. A brief description of the biochemistry of glutamine transport, synthesis, and glutaminolysis, etc. will forego a detailed comparison of the therapeutic strategies undertaken to inhibit glutamine utilization by gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA