Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483291

RESUMO

Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.


Assuntos
Asparagina/metabolismo , Frutose/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/metabolismo , Salmonelose Animal/imunologia , Salmonelose Animal/metabolismo , Salmonella enterica/imunologia , Salmonella enterica/metabolismo , Animais , Inflamação/imunologia , Inflamação/patologia , Salmonelose Animal/patologia , Salmonella enterica/patogenicidade
3.
J Mol Biol ; 434(7): 167480, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176290

RESUMO

FraR, a transcriptional repressor, was postulated to regulate the metabolism of the Amadori compound fructose-asparagine (F-Asn) in the foodborne pathogen Salmonella enterica. Here, the DNA- and inducer-binding affinities and stoichiometries of FraR were determined and cross-validated by electrophoretic mobility-shift assays (EMSAs) and online buffer exchange coupled to native mass spectrometry (OBE-nMS). We demonstrate the utility of OBE-nMS to characterize protein and protein-DNA complexes that are not amenable to offline exchange into volatile buffers. OBE-nMS complemented EMSAs by revealing that FraR binds to the operator DNA as a dimer and by establishing 6-phosphofructose-aspartate as the inducer that weakens DNA binding by FraR. These results provide insights into how FraR regulates the expression of F-Asn-catabolizing enzymes and add to our understanding of the intricate bacterial circuitry that dictates utilization of diverse nutrients.


Assuntos
Proteínas de Bactérias , Salmonella enterica , Fatores de Transcrição , Asparagina/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Frutose/metabolismo , Espectrometria de Massas/métodos , Salmonella enterica/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA