Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(23): 7444-7452, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37972310

RESUMO

Structure-based virtual high-throughput screening is used in early-stage drug discovery. Over the years, docking protocols and scoring functions for protein-ligand complexes have evolved to improve the accuracy in the computation of binding strengths and poses. In the past decade, RNA has also emerged as a target class for new small-molecule drugs. However, most ligand docking programs have been validated and tested for proteins and not RNA. Here, we test the docking power (pose prediction accuracy) of three state-of-the-art docking protocols on 173 RNA-small molecule crystal structures. The programs are AutoDock4 (AD4) and AutoDock Vina (Vina), which were designed for protein targets, and rDock, which was designed for both protein and nucleic acid targets. AD4 performed relatively poorly. For RNA targets for which a crystal structure of a bound ligand used to limit the docking search space is available and for which the goal is to identify new molecules for the same pocket, rDock performs slightly better than Vina, with success rates of 48% and 63%, respectively. However, in the more common type of early-stage drug discovery setting, in which no structure of a ligand-target complex is known and for which a larger search space is defined, rDock performed similarly to Vina, with a low success rate of ∼27%. Vina was found to have bias for ligands with certain physicochemical properties, whereas rDock performs similarly for all ligand properties. Thus, for projects where no ligand-protein structure already exists, Vina and rDock are both applicable. However, the relatively poor performance of all methods relative to protein-target docking illustrates a need for further methods refinement.


Assuntos
Proteínas , RNA , RNA/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas/química , Descoberta de Drogas , Ligação Proteica
2.
Proteins ; 90(9): 1645-1654, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403257

RESUMO

The startling diversity in αß T-cell receptor (TCR) sequences and structures complicates molecular-level analyses of the specificity and sensitivity determining T-cell immunogenicity. A number of three-dimensional (3D) structures are now available of ternary complexes between TCRs and peptides: major histocompatibility complexes (pMHC). Here, to glean molecular-level insights we analyze structures of TCRs bound to human class I nonamer peptide-MHC complexes. Residues at peptide positions 4-8 are found to be particularly important for TCR binding. About 90% of the TCRs hydrogen bond with one or both of the peptide residues at positions 4 and 8 presented by MHC allele HLA-A2, and this number is still ~79% for peptides presented by other MHC alleles. Residue 8, which lies outside the previously-identified central peptide region, is crucial for TCR recognition of class I MHC-presented nonamer peptides. The statistics of the interactions also sheds light on the MHC residues important for TCR binding. The present analysis will aid in the structural modeling of TCR:pMHC complexes and has implications for the rational design of peptide-based vaccines and T-cell-based immunotherapies.


Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Complexo Principal de Histocompatibilidade , Peptídeos/química , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética
3.
J Am Chem Soc ; 136(24): 8590-605, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24844417

RESUMO

Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 µs MD simulation). The side chain conformational free energy surfaces obtained using the adaptive biasing force (ABF) method for a set of eight proteins with different molecular weights and secondary structures are used to determine the methyl axial NMR order parameters (O(axis)(2)), populations of side chain rotamer states (ρ), conformational entropies (S(conf)), probability fluxes, and activation energies for side chain inter-rotameric transitions. The free energy barriers separating side chain rotamer states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal distribution with an intense peak at ~5 kcal/mol and two shoulders at ~3 and ~7.5 kcal/mol, indicating that some barriers are more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and the influences of the trimodal barrier distribution on the distribution of O(axis)(2) and the side chain conformational entropy are discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between O(axis)(2) and the side chain rotamer populations (ρ). The apparent universality in O(axis)(2) versus ρ correlation, trimodal barrier distribution, and distinct characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the dynamical heterogeneity of fast side chain motions in proteins.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Propriedades de Superfície , Termodinâmica
4.
Front Immunol ; 15: 1426173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221256

RESUMO

Artificial-intelligence and machine-learning (AI/ML) approaches to predicting T-cell receptor (TCR)-epitope specificity achieve high performance metrics on test datasets which include sequences that are also part of the training set but fail to generalize to test sets consisting of epitopes and TCRs that are absent from the training set, i.e., are 'unseen' during training of the ML model. We present TCR-H, a supervised classification Support Vector Machines model using physicochemical features trained on the largest dataset available to date using only experimentally validated non-binders as negative datapoints. TCR-H exhibits an area under the curve of the receiver-operator characteristic (AUC of ROC) of 0.87 for epitope 'hard splitting' (i.e., on test sets with all epitopes unseen during ML training), 0.92 for TCR hard splitting and 0.89 for 'strict splitting' in which neither the epitopes nor the TCRs in the test set are seen in the training data. Furthermore, we employ the SHAP (Shapley additive explanations) eXplainable AI (XAI) method for post hoc interrogation to interpret the models trained with different hard splits, shedding light on the key physiochemical features driving model predictions. TCR-H thus represents a significant step towards general applicability and explainability of epitope:TCR specificity prediction.


Assuntos
Epitopos de Linfócito T , Aprendizado de Máquina , Receptores de Antígenos de Linfócitos T , Máquina de Vetores de Suporte , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Epitopos de Linfócito T/imunologia , Humanos , Ligação Proteica , Biologia Computacional/métodos
5.
J Phys Chem B ; 125(34): 9641-9651, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34423989

RESUMO

The heterogeneous fast side-chain dynamics of proteins plays crucial roles in molecular recognition and binding. Site-specific NMR experiments quantify these motions by measuring the model-free order parameter (Oaxis2) on a scale of 0 (most flexible) to 1 (least flexible) for each methyl-containing residue of proteins. Here, we have examined ligand-induced variations in the fast side-chain dynamics and conformational entropy of calmodulin (CaM) using five different CaM-peptide complexes. Oaxis2 of CaM in the ligand-free (Oaxis,U2) and ligand-bound (Oaxis,B2) states are calculated from molecular dynamics trajectories and conformational energy surfaces obtained using the adaptive biasing force (ABF) method. ΔOaxis2 = Oaxis,B2 - Oaxis,U2 follows a Gaussian-like unimodal distribution whose second moment is a potential indicator of the binding affinity of these complexes. The probability for the binding-induced Oaxis,U2 → Oaxis,B2 transition decreases with increasing magnitude of ΔOaxis2, indicating that large flexibility changes are improbable for side chains of CaM after ligand binding. A linear correlation established between ΔOaxis2 and the conformational entropy change of the protein makes possible the determination of the conformational entropy of binding of protein-ligand complexes. The results not only underscore the functional importance of fast side-chain fluctuations but also highlight key motional and thermodynamic correlates of protein-ligand binding.


Assuntos
Calmodulina , Calmodulina/metabolismo , Entropia , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA