Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(14): 5078-5083, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972336

RESUMO

We have studied the calcium phosphate precipitation reaction by producing chemical gardens in a controlled manner using a three-dimensional flow-driven technique. The injection of the phosphate containing solution into the calcium ion reservoir has resulted in structures varying from membranes to crystals. Dynamical phase diagrams are constructed by varying chemical composition and flow rates from which three different growth mechanisms have been revealed. The microstructural analysis by scanning electron microscopy and powder X-ray diffraction confirmed the morphological transition from membrane tubes to crystalline branches upon decreasing pH.

2.
Soft Matter ; 19(22): 4137-4143, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249219

RESUMO

Self-assembly functionalizes active constituents to perform rhythmic activities. Here, our results show that the capillary-Marangoni interaction of irregularly moving gel beads develops complex patterns at the air-liquid interface. The collective behavior of the self-assembled structures exhibits breathing dynamics, polygonal oscillating rings, and cluster synchrony of chains. Interestingly, the trapping of soft particles generates relay synchronization of a rotor. Swarming of clusters is found to form rhythmic shrinking and expanding multiple-ring patterns. The development of self-organized spatiotemporal patterns of our active gel system provides a new way of creating collective oscillations.

3.
Soft Matter ; 19(41): 8033-8039, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37842822

RESUMO

A droplet of sodium alginate dripped into calcium chloride solution results in plate or boat shaped hydrogels. Both exhibit several minute-long self-propelled motion on the liquid surface without any extra fuel added, offering a new method to making active materials. By changing the initial concentrations, we are able to tune the transient dynamic activities from translational to rotational or stop-and-run motion. Dynamics are governed by osmotic pressure induced Marangoni effect, depending on the density difference and initial concentrations.

4.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782830

RESUMO

We have built an autocatalytic reaction network, based on the hydrolysis of certain imines, which exhibits bistability in an open system. The positive feedback originates from the interplay of fast acid-base equilibria, leading to hydroxide ion production, and pH-dependent hydrolysis rates. The addition of a first-order removal of the autocatalyst can result in sustained pH oscillations close to physiological conditions. The unit-amplitude pH oscillations are accompanied by the stoichiometric conversion of imine into amine back and forth. A systematic parameter search is carried out to characterize the rich observable dynamics and identify the evolving bifurcations.

5.
Soft Matter ; 18(8): 1731-1736, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156669

RESUMO

We show that a chemical garden can be developed from an alkaline metal precipitate using a flow-driven setup. By injecting sodium phosphate solution into lithium chloride solution from below, a liquid jet appears, on which a precipitate grows forming a structure resembling a hydrothermal vent. The precipitate column continuously builds upward until a maximum height is reached. The vertical growth then significantly slows down while the tube diameter still increases. The analysis of the growth profiles has revealed a linear dependence of volume growth rate on the injection rate, hence yielding a universal growth profile. The expansion in diameter, localized at the tip of the structure, scales with a power law suggesting that the phenomenon is controlled by both diffusion and convection.

6.
Soft Matter ; 18(42): 8157-8164, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263702

RESUMO

Systems far-from-equilibrium self-assemble into spatiotemporal structures. Here, we report on the formation of calcium alginate gardens along with their inorganic hybrids when a sodium alginate solution containing sodium phosphate in various compositions is injected into a calcium chloride reservoir. The viscoelastic properties of the membranes developed are controlled by the injection rate, while their thickness by the amount of sodium phosphate besides diffusion. Inorganic hybrid membranes with constant thickness are synthesized in the presence of a sufficient amount of sodium phosphate. The electrochemical characterization of the membranes suggests that the driving force is the pH-gradient developing along the two sides; hence, the cell potential can be controlled by the addition of alkaline sodium phosphate into the sodium alginate solution.


Assuntos
Alginatos , Fosfatos de Cálcio , Alginatos/química , Fosfatos de Cálcio/química , Fosfatos/química
7.
Soft Matter ; 18(23): 4389-4395, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35616522

RESUMO

In H2O2 solutions, manganese-containing chemical garden tubes can self-propel due to the catalytic production and ejection of oxygen bubbles. Here, we investigate the collective behavior of these self-assembled precipitate tubes. In thin solution layers, the tubes show definite autonomous dynamics with only weak interactions that result from fluid motion around the moving units and directional changes during collisions. In thick solution layers with convex menisci forcing spatial confinement, the tubes undergo cycles of self-assembly and dispersion. This collective motion results from the rhythmic creation of a large master bubble around which the tubes align tangentially.


Assuntos
Peróxido de Hidrogênio , Catálise , Movimento (Física)
8.
J Chem Phys ; 156(13): 134902, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395898

RESUMO

The growth of viscoelastic curved materials, inspired by biological systems, may give rise to various complex structures. One of the simplest ways to control the pattern formation is to vary the orientation of the reaction vessel while keeping all other experimental conditions constant. Here, we report the self-organization of soft chitosan tubes by injecting acidic chitosan sol into a pool of sodium hydroxide solution, where the adhesive force between the gel and container keeps the tubules on the bottom of the reactor. The horizontal growth of the tubular structure undergoes spontaneous symmetry breaking, where instabilities develop on the surface of the chitosan tubules. Transformation of folds into wrinkles and finally to a smooth tube takes place by varying the orientation of the container. In addition to characterizing the evolving structures, we have also shown that the linear growth rate of the tube scales with the tilt angle of the container from the horizontal.


Assuntos
Quitosana , Quitosana/química , Fenômenos Mecânicos
9.
Cell Mol Life Sci ; 78(5): 2329-2339, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32979053

RESUMO

Atomic-level structural insight on the human ABCG2 membrane protein, a pharmacologically important transporter, has been recently revealed by several key papers. In spite of the wealth of structural data, the pathway of transmembrane movement for the large variety of structurally different ABCG2 substrates and the physiological lipid regulation of the transporter has not been elucidated. The complex molecular dynamics simulations presented here may provide a breakthrough in understanding the steps of the substrate transport process and its regulation by cholesterol. Our analysis revealed drug binding cavities other than the central binding site and delineated a putative dynamic transport pathway for substrates with variable structures. We found that membrane cholesterol accelerated drug transport by promoting the closure of cytoplasmic protein regions. Since ABCG2 is present in all major biological barriers and drug-metabolizing organs, influences the pharmacokinetics of numerous clinically applied drugs, and plays a key role in uric acid extrusion, this information may significantly promote a reliable prediction of clinically important substrate characteristics and drug-drug interactions.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Colesterol/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação/genética , Transporte Biológico , Colesterol/metabolismo , Humanos , Irinotecano/química , Irinotecano/metabolismo , Lipídeos de Membrana/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos
10.
Chaos ; 32(6): 063120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778152

RESUMO

Active soft materials exhibit various dynamics ranging from boat pulsation to thin membrane deformation. In the present work, in situ prepared ethanol-containing chitosan gels propel in continuous and intermittent motion. The active life of the organic material loaded to the constant fuel level follows a linear scaling, and its maximal velocity and projection area decrease steeply with chitosan concentration. A thin propelling platelet forms at low polymer content, leading to the suppression of intermittent motion. Moreover, the fast accelerating thin gels can split into a crescent and circular-like shape or fission into multiple asymmetric fragments.


Assuntos
Quitosana , Hidrogéis
11.
Chemphyschem ; 22(5): 488-492, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355991

RESUMO

Spatial structures break their symmetry under the influence of shear stress arising from fluid flow. Here, we present surface instabilities appearing on chitosan tubes when an acidic solution of chitosan with various molecular weight is injected into a pool of sodium hydroxide solution. At slow flow rates wrinkle-to-fold transition takes place along the direction of the flow yielding a banded structure. For greater injection rates we observe coexisting modes of wrinkles and folds which are stabilized to periodic wrinkles when the alkaline concentration is increased. The instabilities are characterized by the scaling laws of the pattern wavelength and amplitude with the tube characteristics. Our experimental adaptation of mechanical instabilities provides a new in situ method to create soft biomaterials with the desired surface morphology without the use of any prefabricated templates.

12.
Langmuir ; 37(43): 12690-12696, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34672616

RESUMO

Soft materials such as gels or biological tissues can develop via self-assembly under chemo-mechanical forces. Here, we report the instantaneous formation of soft tubular structures with a two-level hierarchy by injecting a mixture of inorganic salt and chitosan (CS) solution from below into a reactor filled with alkaline solution. Folding and wrinkling instabilities occur on the originally smooth surface controlled by the salt composition and concentration. Liesegang-like precipitation patterns develop on the outer surface on a µm length scale in the presence of calcium chloride, while the precipitate particles are distributed evenly in the bulk as corroborated by X-ray µ-CT. On the other hand, barium hydroxide precipitates out only in the thin outer layer of the CS tubule when barium chloride is introduced into the CS solution. Independent of the concentration of the weakly interacting salt, an electric potential gradient across the CS membrane develops, which vanishes when the pH difference between the two sides of the membrane diminishes.


Assuntos
Quitosana , Metais
13.
Liver Int ; 41(6): 1344-1357, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33650203

RESUMO

BACKGROUND & AIM: ABCB4 is expressed at the canalicular membrane of hepatocytes. This ATP-binding cassette (ABC) transporter is responsible for the secretion of phosphatidylcholine into bile canaliculi. Missense genetic variations of ABCB4 are correlated with several rare cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis type 3 (PFIC3). In a repurposing strategy to correct intracellularly retained ABCB4 variants, we tested 16 compounds previously validated as cystic fibrosis transmembrane conductance regulator (CFTR) correctors. METHODS: The maturation, intracellular localization and activity of intracellularly retained ABCB4 variants were analyzed in cell models after treatment with CFTR correctors. In addition, in silico molecular docking calculations were performed to test the potential interaction of CFTR correctors with ABCB4. RESULTS: We observed that the correctors C10, C13, and C17, as well as the combinations of C3 + C18 and C4 + C18, allowed the rescue of maturation and canalicular localization of four distinct traffic-defective ABCB4 variants. However, such treatments did not permit a rescue of the phosphatidylcholine secretion activity of these defective variants and were also inhibitory of the activity of wild type ABCB4. In silico molecular docking analyses suggest that these CFTR correctors might directly interact with transmembrane domains and/or ATP-binding sites of the transporter. CONCLUSION: Our results illustrate the uncoupling between the traffic and the activity of ABCB4 because the same molecules can rescue the traffic of defective variants while they inhibit the secretion activity of the transporter. We expect that this study will help to design new pharmacological tools with potential clinical interest.


Assuntos
Colestase Intra-Hepática , Colestase , Subfamília B de Transportador de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Simulação de Acoplamento Molecular , Fosfatidilcolinas
14.
J Chem Phys ; 155(17): 175102, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742207

RESUMO

Oscillatory processes are essential for normal functioning and survival of biological systems, and reactive oxygen species have a prominent role in many of them. A mechanism representing the dynamics of these species in the rhizosphere is analyzed using stoichiometric network analysis with the aim to determine its capabilities to simulate various dynamical states, including oscillations. A detailed analysis has shown that unstable steady states result from four destabilizing feedback cycles, among which the cycle involving hydroquinone, an electron acceptor, and its semi-reduced form is the dominant one responsible for the existence of saddle-node and Andronov-Hopf bifurcations. This requires a higher steady-state concentration for the reduced electron acceptor compared to that of the remaining species, where the level of oxygen steady-state concentration determines whether the Andronov-Hopf or saddle-node bifurcation will occur.


Assuntos
Espécies Reativas de Oxigênio/química , Rizosfera , Hidroquinonas/química
15.
Soft Matter ; 16(36): 8325-8329, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32902544

RESUMO

Organic chemical gardens of chitosan hydrogel develop upon injecting an acidic chitosan solution into an alkaline solution. Besides complex and budding structures, tubular hydrogel formations develop that exhibit periodic surface patterns. The underlying wrinkling instability is identified by its characteristic wavelength dependence on the diameter of the elastic material formed. The flow-driven conditions allow precise control over the structure that can help the design of soft bio-inspired materials. Our findings can also suggest a new direction in the field of chemobrionics.


Assuntos
Quitosana , Hidrogéis , Compostos Orgânicos
16.
Phys Chem Chem Phys ; 22(24): 13390-13397, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32356553

RESUMO

The production of solid materials via chemical reactions is abundant both in nature and in industrial processes. Precipitation reactions coupled with transport phenomena lead to enhanced product properties not observed in the traditional well-stirred systems. Herein, we present a flow-driven pattern formation upon radial injection in a confined geometry for various chemical systems to show how reaction kinetics modifies the emerging precipitation patterns. It is found that chemically similar elements, such as alkaline earth or transition metals react on very different time scales under the same experimental conditions. The patterns are quantified and compared both with literature results obtained in unconfined solution layers and with hydrodynamic simulations.

17.
Phys Chem Chem Phys ; 22(18): 10278-10285, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32356539

RESUMO

The spatio-temporal dynamics of an A + B → C front subjected to radial advection is investigated experimentally in a thin solution layer confined between two horizontal plates by radially injecting a solution of potassium thiocyanate (A) into a solution of iron(iii) nitrate (B). The total amount and spatial distribution of the product FeSCN2+ (C) are measured for various flow rates Q and solution thicknesses h. The long-time evolution of the total amount of product, nC, is compared to a scaling obtained theoretically from a one-dimensional reaction-diffusion-advection model with passive advection along the radial coordinate r. We show that, in the experiments, nC is significantly affected when varying either Q or h but scales as nC∼Q-1/2V where V is the volume of injected reactant A provided the solution thickness h between the two confining plates is sufficiently small, in agreement with the theoretical prediction. Our experimental results also evidence that the temporal evolution of the width of the product zone, WC, follows a power law, the exponent of which varies with both Q and h, in disagreement with the one-dimensional model that predicts WC∼t1/2. We show that this experimental observation can be rationalized by taking into account the non-uniform profile of the velocity field of the injected reactant within the cell gap.

18.
Artif Life ; 26(3): 315-326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32697160

RESUMO

Self-organizing precipitation processes, such as chemical gardens forming biomimetic micro- and nanotubular forms, have the potential to show us new fundamental science to explore, quantify, and understand nonequilibrium physicochemical systems, and shed light on the conditions for life's emergence. The physics and chemistry of these phenomena, due to the assembly of material architectures under a flux of ions, and their exploitation in applications, have recently been termed chemobrionics. Advances in understanding in this area require a combination of expertise in physics, chemistry, mathematical modeling, biology, and nanoengineering, as well as in complex systems and nonlinear and materials sciences, giving rise to this new synergistic discipline of chemobrionics.


Assuntos
Biologia , Biomimética , Química , Engenharia , Pesquisa Interdisciplinar , Origem da Vida , Física , Ciência dos Materiais , Modelos Teóricos , Nanoestruturas
19.
J Chem Phys ; 152(9): 094906, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480707

RESUMO

Controlling self-organization in precipitation reactions has received growing attention in the efforts of engineering highly ordered spatial structures. Experiments have been successful in regulating the band patterns of the Liesegang phenomenon on various scales. Herein, we show that by adjusting the composition of the hydrogel medium, we can switch the final pattern between the classical band structure and the rare precipitate spots with hexagonal symmetry. The accompanying modeling study reveals that besides the modification of gel property, tuning of the time scale of diffusional spreading of hydroxide ions with respect to that of the phase separation drives the mode selection between one-dimensional band and two-dimensional spot patterns.

20.
Angew Chem Int Ed Engl ; 59(7): 2823-2828, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31833161

RESUMO

Highly ordered superstructures composed of inorganic nanoparticles appear in natural and synthetic systems, however the mechanisms of non-equilibrium self-organization that may be involved are still poorly understood. Herein, we performed a kinetic investigation of the precipitation of calcium phosphate using a process widely found in microorganisms: the hydrolysis of urea by enzyme urease. With high initial ratio of calcium ion to phosphate, periodic precipitation was obtained accompanied by pH oscillations in a well-stirred, closed reactor. We propose that an internal pH-regulated change in the concentration of phosphate ion is the driving force for periodicity. A simple model involving the biocatalytic reaction network coupled with burst nucleation of nanoparticles above a critical supersaturation reproduced key features of the experiments. These findings may provide insight to the self-organization of nanoparticles in biomineralization and improve design strategies of biomaterials for medical applications.


Assuntos
Fosfatos de Cálcio/metabolismo , Ureia/metabolismo , Urease/metabolismo , Biocatálise , Fosfatos de Cálcio/química , Canavalia/enzimologia , Hidrólise , Tamanho da Partícula , Propriedades de Superfície , Ureia/química , Urease/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA