Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 176(4): 928-943.e22, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30712874

RESUMO

Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.


Assuntos
Reprogramação Celular/genética , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo
2.
Cell ; 177(7): 1915-1932.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31130381

RESUMO

Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Homeostase , Leucemia Mieloide Aguda/metabolismo , Osteoblastos/metabolismo , Osteogênese , Microambiente Tumoral , Animais , Células da Medula Óssea/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Osteoblastos/patologia , Células Estromais/metabolismo , Células Estromais/patologia
3.
Immunity ; 52(6): 1088-1104.e6, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32304633

RESUMO

During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , RNA Citoplasmático Pequeno/genética , Timócitos/citologia , Timócitos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Análise de Célula Única , Timócitos/imunologia , Transcriptoma
5.
Immunity ; 51(4): 696-708.e9, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618654

RESUMO

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation involving interaction of multiple immune cell types. To systematically characterize this response, we analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA sequencing (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Computational analysis revealed broad shifts in both cell-type composition and cell programs in response to the inflammation, especially in group 2 innate lymphoid cells (ILC2s). Inflammation induced the expression of exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP), in intestinal KLRG1+ ILC2s. α-CGRP antagonized KLRG1+ ILC2s proliferation but promoted IL-5 expression. Genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s. Our work highlights a model where α-CGRP-mediated neuronal signaling is critical for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Neuropeptídeos/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Cultivadas , Biologia Computacional , Imunidade Inata , Interleucina-5/genética , Interleucina-5/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neuropeptídeos/genética , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células Th2/imunologia , Transcriptoma , Regulação para Cima
6.
Nature ; 595(7865): 101-106, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108686

RESUMO

T cell immunoglobulin and mucin-containing molecule 3 (TIM-3), first identified as a molecule expressed on interferon-γ producing T cells1, is emerging as an important immune-checkpoint molecule, with therapeutic blockade of TIM-3 being investigated in multiple human malignancies. Expression of TIM-3 on CD8+ T cells in the tumour microenvironment is considered a cardinal sign of T cell dysfunction; however, TIM-3 is also expressed on several other types of immune cell, confounding interpretation of results following blockade using anti-TIM-3 monoclonal antibodies. Here, using conditional knockouts of TIM-3 together with single-cell RNA sequencing, we demonstrate the singular importance of TIM-3 on dendritic cells (DCs), whereby loss of TIM-3 on DCs-but not on CD4+ or CD8+ T cells-promotes strong anti-tumour immunity. Loss of TIM-3 prevented DCs from expressing a regulatory program and facilitated the maintenance of CD8+ effector and stem-like T cells. Conditional deletion of TIM-3 in DCs led to increased accumulation of reactive oxygen species resulting in NLRP3 inflammasome activation. Inhibition of inflammasome activation, or downstream effector cytokines interleukin-1ß (IL-1ß) and IL-18, completely abrogated the protective anti-tumour immunity observed with TIM-3 deletion in DCs. Together, our findings reveal an important role for TIM-3 in regulating DC function and underscore the potential of TIM-3 blockade in promoting anti-tumour immunity by regulating inflammasome activation.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Inflamassomos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Células Dendríticas , Feminino , Receptor Celular 2 do Vírus da Hepatite A/deficiência , Receptor Celular 2 do Vírus da Hepatite A/genética , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Nature ; 596(7873): 576-582, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381210

RESUMO

Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.


Assuntos
Ciclo Celular , Linhagem da Célula , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antioxidantes/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Código de Barras de DNA Taxonômico , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Lentivirus/genética , Recidiva Local de Neoplasia/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Nature ; 586(7831): 769-775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057200

RESUMO

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Assuntos
Predisposição Genética para Doença/genética , Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Linhagem da Célula/genética , Autorrenovação Celular , Quinase do Ponto de Checagem 2/genética , Feminino , Humanos , Leucócitos/patologia , Masculino , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Risco , Homeostase do Telômero
9.
Proc Natl Acad Sci U S A ; 120(50): e2314698120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064509

RESUMO

Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Camundongos , Animais , Doença de Stargardt/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Retinaldeído/metabolismo , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(19): e2221045120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126699

RESUMO

Chronic, progressive retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa, arise from genetic and environmental perturbations of cellular and tissue homeostasis. These disruptions accumulate with repeated exposures to stress over time, leading to progressive visual impairment and, in many cases, legal blindness. Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of pathogenesis when the opportunity to preserve the retinal structure and visual function is greatest. To address this urgent, unmet medical need, we employed a systems pharmacology platform for therapeutic development. Through integrative single-cell transcriptomics, proteomics, and phosphoproteomics, we identified universal molecular mechanisms across distinct models of age-related and inherited retinal degenerations, characterized by impaired physiological resilience to stress. Here, we report that selective, targeted pharmacological inhibition of cyclic nucleotide phosphodiesterases (PDEs), which serve as critical regulatory nodes that modulate intracellular second messenger signaling pathways, stabilized the transcriptome, proteome, and phosphoproteome through downstream activation of protective mechanisms coupled with synergistic inhibition of degenerative processes. This therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across various models of age-related and inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.


Assuntos
Retinopatia Diabética , Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/metabolismo , Degeneração Macular/patologia , Retinopatia Diabética/metabolismo
11.
J Biol Chem ; 300(6): 107344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705389

RESUMO

MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.


Assuntos
Camundongos Knockout , MicroRNAs , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Camundongos , Deleção de Genes , Tomografia de Coerência Óptica
12.
J Biol Chem ; 300(5): 107291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636661

RESUMO

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Assuntos
Ceramidas , Receptores de Adiponectina , Retina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Ceramidas/metabolismo , Retina/metabolismo , Retina/patologia , Camundongos Knockout , Ácidos Graxos Insaturados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
13.
Nature ; 574(7778): 365-371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597962

RESUMO

Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.


Assuntos
Feto/citologia , Hematopoese , Fígado/citologia , Fígado/embriologia , Células Sanguíneas/citologia , Microambiente Celular , Feminino , Feto/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Tecido Linfoide/citologia , Análise de Célula Única , Células-Tronco/metabolismo
14.
Nat Methods ; 17(8): 793-798, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719530

RESUMO

Massively parallel single-cell and single-nucleus RNA sequencing has opened the way to systematic tissue atlases in health and disease, but as the scale of data generation is growing, so is the need for computational pipelines for scaled analysis. Here we developed Cumulus-a cloud-based framework for analyzing large-scale single-cell and single-nucleus RNA sequencing datasets. Cumulus combines the power of cloud computing with improvements in algorithm and implementation to achieve high scalability, low cost, user-friendliness and integrated support for a comprehensive set of features. We benchmark Cumulus on the Human Cell Atlas Census of Immune Cells dataset of bone marrow cells and show that it substantially improves efficiency over conventional frameworks, while maintaining or improving the quality of results, enabling large-scale studies.


Assuntos
Computação em Nuvem/economia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biologia Computacional/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Análise de Sequência de RNA/economia
15.
Phys Chem Chem Phys ; 19(33): 22580-22591, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28809965

RESUMO

An intuition based on deterministic models of chemical kinetics is that population heterogeneity of transcription factor levels in cells is transmitted unchanged downstream to the target genes. We use a stochastic model of a two-gene cascade with a self-regulating upstream gene to show that, counter to the intuition, there is no simple mapping (bimodal to bimodal, unimodal to unimodal) between the shapes of the distributions of transcription factor numbers and target protein numbers in cells. Due to the presence of the two regulations, the system contains two nonlinear transfer functions, defined by the Hill kinetics of transcription factor binding. The transfer function of the regulator can "interfere" with the transfer function of the target, converting the bimodal input into a unimodal output or vice versa. We show that this effect can be predicted by a geometric construction. As an example application of the method, we present a case study of a system of several downstream genes of different sensitivities, controlled by a common transcription factor which also regulates its own transcription. We show that a single regulator can induce qualitatively different patterns (binary or graded) of responses to a signal in different downstream genes, depending on whether the sensitivity regions of the transfer functions of the upstream and downstream genes overlap or not. Alternatively, the same model can be interpreted as describing a single downstream gene that has different sensitivities in different cell lines due to mutations. Our model shows, therefore, a possible kinetic mechanism by which different genes can interpret the same biological signal in a different manner.


Assuntos
Fatores de Transcrição/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Homeostase , Humanos , Cinética , Modelos Moleculares , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética
16.
Nucleic Acids Res ; 42(2): 727-38, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121687

RESUMO

We introduce macromolecular crowding quantitatively into the model for kinetics of gene regulation in Escherichia coli. We analyse and compute the specific-site searching time for 180 known transcription factors (TFs) regulating 1300 operons. The time is between 160 s (e.g. for SoxS Mw = 12.91 kDa) and 1550 s (e.g. for PepA6 of Mw = 329.28 kDa). Diffusion coefficients for one-dimensional sliding are between for large proteins up to for small monomers or dimers. Three-dimensional diffusion coefficients in the cytoplasm are 2 orders of magnitude larger than 1D sliding coefficients, nevertheless the sliding enhances the binding rates of TF to specific sites by 1-2 orders of magnitude. The latter effect is due to ubiquitous non-specific binding. We compare the model to experimental data for LacI repressor and find that non-specific binding of the protein to DNA is activation- and not diffusion-limited. We show that the target location rate by LacI repressor is optimized with respect to microscopic rate constant for association to non-specific sites on DNA. We analyse the effect of oligomerization of TFs and DNA looping effects on searching kinetics. We show that optimal searching strategy depends on TF abundance.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Repressores Lac/metabolismo , Modelos Genéticos
17.
Phys Rev Lett ; 115(21): 218102, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636875

RESUMO

The dimeric motor protein kinesin-1 moves processively along microtubules against forces of up to 7 pN. However, the mechanism of force generation is still debated. Here, we point to the crucial importance of diffusion of the tethered motor domain for the stepping of kinesin-1: small crowders stop the motor at a viscosity of 5 mPa·s-corresponding to a hydrodynamic load in the sub-fN (~10^{-4} pN) range-whereas large crowders have no impact even at viscosities above 100 mPa·s. This indicates that the scale-dependent, effective viscosity experienced by the tethered motor domain is a key factor determining kinesin's functionality. Our results emphasize the role of diffusion in the kinesin-1 stepping mechanism and the general importance of the viscosity scaling paradigm in nanomechanics.


Assuntos
Cinesinas/química , Modelos Químicos , Difusão , Modelos Moleculares , Viscosidade
18.
Nat Commun ; 15(1): 5943, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009597

RESUMO

Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6ßrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.


Assuntos
Modelos Animais de Doenças , Reposicionamento de Medicamentos , Retinose Pigmentar , Animais , Camundongos , Cães , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Mutação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Knockout , Amaurose Congênita de Leber/tratamento farmacológico , Amaurose Congênita de Leber/genética , Bromocriptina/farmacologia , Bromocriptina/uso terapêutico , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Humanos , Quimioterapia Combinada , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Feminino , AMP Cíclico/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Masculino , Cálcio/metabolismo
19.
J Biol Chem ; 287(28): 23878-86, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22573335

RESUMO

The self-assembly of the tubulin homologue FtsZ at the mid-cell is a critical step in bacterial cell division. We introduce dynamic light scattering (DLS) spectroscopy as a new method to study the polymerization kinetics of FtsZ in solution. Analysis of the DLS data indicates that the FtsZ polymers are remarkably monodisperse in length, independent of the concentrations of GTP, GDP, and FtsZ monomers. Measurements of the diffusion coefficient of the polymers demonstrate that their length is remarkably stable until the free GTP is consumed. We estimated the mean size of the FtsZ polymers within this interval of stable length to be between 9 and 18 monomers. The rates of FtsZ polymerization and depolymerization are likely influenced by the concentration of GDP, as the repeated addition of GTP to FtsZ increased the rate of polymerization and slowed down depolymerization. Increasing the FtsZ concentration did not change the size of FtsZ polymers; however, it increased the rate of the depolymerization reaction by depleting free GTP. Using transmission electron microscopy we observed that FtsZ forms linear polymers in solutions which rapidly convert to large bundles upon contact with surfaces at time scales as short as several seconds. Finally, the best studied small molecule that binds to FtsZ, PC190723, had no stabilizing effect on Caulobacter crescentus FtsZ filaments in vitro, which complements previous studies with Escherichia coli FtsZ and confirms that this class of small molecules binds Gram-negative FtsZ weakly.


Assuntos
Proteínas de Bactérias/química , Caulobacter crescentus/metabolismo , Proteínas do Citoesqueleto/química , Luz , Espalhamento de Radiação , Algoritmos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Cinética , Microscopia Eletrônica de Transmissão , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Piridinas/farmacologia , Soluções/química , Tiazóis/farmacologia
20.
Anal Chem ; 85(8): 4051-6, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23496178

RESUMO

Taylor Dispersion Analysis (TDA) has been performed for analytes moving at high flow rates in long, coiled capillaries. A thin injection zone of the analyte is stretched by the flow and final distribution of concentration of the analyte at the end of the capillary has the gaussian shape. The high flow rates in coiled capillary generate vortices. They convectively mix the analyte across the capillary. This mixing reduces the width of the gaussian distribution several times in comparison to the width obtained in a straight capillary in standard TDA. We have determined an empirical, scaling equation for the width as a function of the flow rate, molecular diffusion coefficient of the analyte, viscosity of the carrier phase, internal radius of the cylindrical capillary, and external radius of the coiled capillary. This equation can be used for different sizes of capillaries in a wide range of parameters without an additional calibration procedure. Our experimental results of flow in the coiled capillary could not be explained by current models based on approximate solutions of the Navier-Stokes equation. We applied the technique to determine the diffusion coefficients of the following analytes: salts, drugs, single amino acids, peptides (from dipeptides to hexapeptides), and proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA