Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 42(6): 913-930, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412526

RESUMO

The Indian system of medicine - Ayurveda says "When diet is wrong, medicine is of no use. When diet is correct, medicine is of no use". In this context, mushroom constitutes one of the major resources for nutraceuticals. Biomolecules of mushrooms have attracted the attention of researchers around the globe due to their proven healthy attributes. They have a plenitude of health-giving properties and these range from immunomodulatory, antiviral, antibacterial, antifungal, antioxidant, anti-inflammatory, antitumor, anticancer, anti-HIV, antidiabetic, anticholesterolic to antiarthritic activities.Mushrooms contain both primary and secondary metabolites. The primary metabolites provide energy while the secondary metabolite exhibits medicinal properties. Hence, the mushroom can be a recipe for human wellness and will play a significant role in fighting COVID-19 pandemics and other infectious diseases.The key findings suggested in this paper refer to the exploration of health and the healing traits of biomolecules of mushrooms. This article reviews the current status of the medicinal attributes of mushrooms and their biomolecules in different diseases such as cardiovascular, diabetes, reproductive diseases, cancer, and neurodegenerative diseases. The global malnutrition-related morbidity and mortality among children under five and lactating women presents a frightening picture and also a black spot on the human face. Malnutrition is responsible for more ill-health than any other cause. Mushrooms as a rich source of bioactive compounds can be claimed as "Best from the Waste" since they grow on the most abundant organic wastes of the Earth, the lignocellulosic substrate, and 'Best of the Rest' because they are excellent nutraceutical resources.


Assuntos
Agaricales , COVID-19 , Desnutrição , Agaricales/química , Antioxidantes , Criança , Feminino , Humanos , Lactação
2.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014390

RESUMO

Natural polyphenols have a wide variety of biological activities and are taken into account as healthcare materials. Resveratrol is one such natural polyphenol, belonging to a group known as stilbenoids (STBs). Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is mainly found in grapes, wine, nuts, and berries. A wide range of biological activities has been demonstrated by resveratrol, including antimicrobial, antioxidant, antiviral, antifungal, and antiaging effects, and many more are still under research. However, as with many other plant-based polyphenol products, resveratrol suffers from low bioavailability once administered in vivo due to its susceptibility to rapid enzyme degradation by the body's innate immune system before it can exercise its therapeutic influence. Therefore, it is of the utmost importance to ensure the best use of resveratrol by creating a proper resveratrol delivery system. Nanomedicine and nanodelivery systems utilize nanoscale materials as diagnostic tools or to deliver therapeutic agents in a controlled manner to specifically targeted locations. After a brief introduction about polyphenols, this review overviews the physicochemical characteristics of resveratrol, its beneficial effects, and recent advances on novel nanotechnological approaches for its delivery according to the type of nanocarrier utilized. Furthermore, the article summarizes the different potential applications of resveratrol as, for example, a therapeutic and disease-preventing anticancer and antiviral agent.


Assuntos
Polifenóis , Estilbenos , Antioxidantes/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas , Polifenóis/farmacologia , Resveratrol , Estilbenos/metabolismo
3.
Cell Tissue Res ; 374(3): 427-438, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30302547

RESUMO

Nanomedicine is the spin-off of modern medicine and nanotechnology and aims to prevent and treat diseases using nanoscale materials such as biocompatible nanoparticles and nanorobots. Targeted cellular and tissue-specific clinical applications with maximal therapeutic effects and insignificant side effects could be achieved by the pursuit of nanotechnology in medicine and healthcare regimen. The majority of conventional cancer therapies eliminate the cells of the tumor but not the cancer stem cells (CSCs). Conversely, the use of nanotechnology in CSC-based therapies is an emerging field of biomedical sciences. This article summarizes the recent trends and application of nanomedicine especially in CSC therapy along with its limitations.


Assuntos
Nanomedicina , Células-Tronco Neoplásicas/patologia , Transplante de Células-Tronco , Animais , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Humanos
4.
Pharmaceutics ; 15(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376174

RESUMO

The objective of this study was to investigate the rhombohedral-structured, flower-like iron oxide (Fe2O3) nanoparticles that were produced using a cost-effective and environmentally friendly coprecipitation process. The structural and morphological characteristics of the synthesized Fe2O3 nanoparticles were analyzed using XRD, UV-Vis, FTIR, SEM, EDX, TEM, and HR-TEM techniques. Furthermore, the cytotoxic effects of Fe2O3 nanoparticles on MCF-7 and HEK-293 cells were evaluated using in vitro cell viability assays, while the antibacterial activity of the nanoparticles against Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) was also tested. The results of our study demonstrated the potential cytotoxic activity of Fe2O3 nanoparticles toward MCF-7 and HEK-293 cell lines. The antioxidant potential of Fe2O3 nanoparticles was evidenced by the 1,1-diphenyl-2-picrylhydrazine (DPPH) and nitric oxide (NO) free radical scavenging assays. In addition, we suggested that Fe2O3 nanoparticles could be used in various antibacterial applications to prevent the spread of different bacterial strains. Based on these findings, we concluded that Fe2O3 nanoparticles have great potential for use in pharmaceutical and biological applications. The effective biocatalytic activity of Fe2O3 nanoparticles recommends its use as one of the best drug treatments for future views against cancer cells, and it is, therefore, recommended for both in vitro and in vivo in the biomedical field.

5.
Biochem Biophys Rep ; 24: 100812, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33083576

RESUMO

In the current scenario of the fight against cancer Integration of potential elements seems to be the best alternative since it overcomes the weaknesses of individuals and the combination of elements makes them formidable in the fight against the cancer war. Inspired by this objective and trusting our knowledge of paddy straw grown oyster mushroom, Pleurotus florida (Pf) mediated synthesis; a first-of-kind approach has been developed for the rapid synthesis of Au-Pt-Ag trimetallic nanoparticles (TMNPs). The developed method was successful, which was confirmed by Ultraviolet-Visible, X-ray diffraction, Transmission Electron Microscopy, Energy Dispersive Spectroscopy. Specifically, prepared TMNPs have been studied for their stability and size as a primary prerequisite for nanomedicine. Finally, the stable nanomedicine developed has been assessed for its performance against the highly metastatic breast cancer cell line (mda-mb-231). The performance was assessed using MTT assay and morphological readings, which were integrated with the cell viability data. We also determined the IC50 value, which was far superior to individual components and motivated us to postulate the possible breast cancer cell killing mechanism of TMNPs. The present study unlocks the new paths for the mushroom-mediated environmentally friendly, economic synthesis of trimetallic nanoparticles, which can be effectively used in cancer nanomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA