Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Immunol ; 23(6): 868-877, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618829

RESUMO

Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a differentiation state in which T cells have reduced and altered effector function that can be partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically and metabolically possess features of canonically exhausted T cells, yet maintain important differences. This 'restrained' phenotype can be perturbed and disease accelerated by CD8+ T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking to the islets, and have a diminished exhausted phenotype, highlighting a physiological role for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for autoimmune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Autoimunidade , Humanos , Neoplasias/patologia , Fenótipo
2.
Nat Immunol ; 20(6): 724-735, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936494

RESUMO

Regulatory T cells (Treg cells) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. Treg cells subvert beneficial anti-tumor immunity by modulating inhibitory receptor expression on tumor-infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms have remained elusive. Here, we found that the cytokines IL-10 and IL-35 (Ebi3-IL-12α heterodimer) were divergently expressed by Treg cell subpopulations in the tumor microenvironment (TME) and cooperatively promoted intratumoral T cell exhaustion by modulating several inhibitory receptor expression and exhaustion-associated transcriptomic signature of CD8+ TILs. While expression of BLIMP1 (encoded by Prdm1) was a common target, IL-10 and IL-35 differentially affected effector T cell versus memory T cell fates, respectively, highlighting their differential, partially overlapping but non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated cooperative roles for Treg cell-derived IL-10 and IL-35 in promoting BLIMP1-dependent exhaustion of CD8+ TILs that limits effective anti-tumor immunity.


Assuntos
Imunidade Celular , Interleucina-10/metabolismo , Interleucinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Melanoma Experimental , Camundongos , Neoplasias/patologia , Transdução de Sinais , Transcriptoma
3.
Immunity ; 52(1): 183-199.e9, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31924475

RESUMO

Head and neck squamous cell carcinoma (HNSCC) arises through exposure to environmental carcinogens or malignant transformation by human papillomavirus (HPV). Here, we assessed the transcriptional profiles of 131,224 single cells from peripheral and intra-tumoral immune populations from patients with HPV- and HPV+ HNSCC and healthy donors. Immune cells within tumors of HPV- and HPV+ HNSCC displayed a spectrum of transcriptional signatures, with helper CD4+ T cells and B cells being relatively divergent and CD8+ T cells and CD4+ regulatory T cells being relatively similar. Transcriptional results were contextualized through multispectral immunofluorescence analyses and evaluating putative cell-cell communication based on spatial proximity. These analyses defined a gene expression signature associated with CD4+ T follicular helper cells that is associated with longer progression-free survival in HNSCC patients. The datasets and analytical approaches herein provide a resource for the further study of the impact of immune cells on viral- and carcinogen-induced cancers.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Alphapapillomavirus/imunologia , Diferenciação Celular/imunologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Imunoterapia , Intervalo Livre de Progressão , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
4.
Immunity ; 51(3): 548-560.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471106

RESUMO

Immunotherapy can reinvigorate dormant responses to cancer, but response rates remain low. Oncolytic viruses, which replicate in cancer cells, induce tumor lysis and immune priming, but their immune consequences are unclear. We profiled the infiltrate of aggressive melanomas induced by oncolytic Vaccinia virus using RNA sequencing and found substantial remodeling of the tumor microenvironment, dominated by effector T cell influx. However, responses to oncolytic viruses were incomplete due to metabolic insufficiencies induced by the tumor microenvironment. We identified the adipokine leptin as a potent metabolic reprogramming agent that supported antitumor responses. Leptin metabolically reprogrammed T cells in vitro, and melanoma cells expressing leptin were immunologically controlled in mice. Engineering oncolytic viruses to express leptin in tumor cells induced complete responses in tumor-bearing mice and supported memory development in the tumor infiltrate. Thus, leptin can provide metabolic support to tumor immunity, and oncolytic viruses represent a platform to deliver metabolic therapy.


Assuntos
Leptina/imunologia , Melanoma/imunologia , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Vaccinia virus/imunologia
5.
Immunity ; 51(2): 381-397.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350177

RESUMO

Regulatory T (Treg) cells are crucial for immune homeostasis, but they also contribute to tumor immune evasion by promoting a suppressive tumor microenvironment (TME). Mice with Treg cell-restricted Neuropilin-1 deficiency show tumor resistance while maintaining peripheral immune homeostasis, thereby providing a controlled system to interrogate the impact of intratumoral Treg cells on the TME. Using this and other genetic models, we showed that Treg cells shaped the transcriptional landscape across multiple tumor-infiltrating immune cell types. Treg cells suppressed CD8+ T cell secretion of interferon-γ (IFNγ), which would otherwise block the activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated fatty acid synthesis in immunosuppressive (M2-like) tumor-associated macrophages (TAMs). Thus, Treg cells indirectly but selectively sustained M2-like TAM metabolic fitness, mitochondrial integrity, and survival. SREBP1 inhibition augmented the efficacy of immune checkpoint blockade, suggesting that targeting Treg cells or their modulation of lipid metabolism in M2-like TAMs could improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Macrófagos/metabolismo , Melanoma/imunologia , Neoplasias Experimentais/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Carcinogênese , Diferenciação Celular , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Evasão da Resposta Imune , Interferon gama/metabolismo , Macrófagos/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropilina-1/genética , Células Th2/imunologia , Microambiente Tumoral
6.
Nat Methods ; 21(5): 835-845, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374265

RESUMO

Modern multiomic technologies can generate deep multiscale profiles. However, differences in data modalities, multicollinearity of the data, and large numbers of irrelevant features make analyses and integration of high-dimensional omic datasets challenging. Here we present Significant Latent Factor Interaction Discovery and Exploration (SLIDE), a first-in-class interpretable machine learning technique for identifying significant interacting latent factors underlying outcomes of interest from high-dimensional omic datasets. SLIDE makes no assumptions regarding data-generating mechanisms, comes with theoretical guarantees regarding identifiability of the latent factors/corresponding inference, and has rigorous false discovery rate control. Using SLIDE on single-cell and spatial omic datasets, we uncovered significant interacting latent factors underlying a range of molecular, cellular and organismal phenotypes. SLIDE outperforms/performs at least as well as a wide range of state-of-the-art approaches, including other latent factor approaches. More importantly, it provides biological inference beyond prediction that other methods do not afford. Thus, SLIDE is a versatile engine for biological discovery from modern multiomic datasets.


Assuntos
Aprendizado de Máquina , Humanos , Biologia Computacional/métodos , Animais , Análise de Célula Única/métodos , Algoritmos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38841857

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication of systemic sclerosis (SSc) and a leading cause of mortality among patients with this disease. PH can also occur as an idiopathic condition (idiopathic pulmonary arterial hypertension). Investigation of transcriptomic alterations in vascular populations is critical to elucidating cellular mechanisms underlying pathobiology of SSc-associated and idiopathic PH. METHODS: We analyzed single-cell RNA sequencing profiles of endothelial and perivascular mesenchymal populations from explanted lung tissue of patients with SSc-associated PH (n=16), idiopathic pulmonary arterial hypertension (n=3), and healthy controls (n=15). Findings were validated by immunofluorescence staining of explanted human lung tissue. RESULTS: Three disease-associated endothelial populations emerged. Two angiogenic endothelial cell (EC) subtypes markedly expanded in SSc-associated PH lungs: tip ECs expressing canonical tip markers PGF and APLN and phalanx ECs expressing genes associated with vascular development, endothelial barrier integrity, and Notch signaling. Gene regulatory network analysis suggested enrichment of Smad1 and PPAR-γ (peroxisome proliferator-activated receptor-γ) regulon activities in these 2 populations, respectively. Mapping of potential ligand-receptor interactions highlighted Notch, apelin-APJ, and angiopoietin-Tie signaling pathways between angiogenic ECs and perivascular cells. Transitional cells, expressing both endothelial and pericyte/smooth muscle cell markers, provided evidence for the presence of endothelial-to-mesenchymal transition. Transcriptional programs associated with arterial endothelial dysfunction implicated VEGF-A (vascular endothelial growth factor-A), TGF-ß1, angiotensin, and TNFSF12/TWEAK in the injury/remodeling phenotype of PH arterial ECs. CONCLUSIONS: These data provide high-resolution insights into the complexity and plasticity of the pulmonary endothelium in SSc-associated PH and idiopathic pulmonary arterial hypertension and provide direct molecular insights into soluble mediators and transcription factors driving PH vasculopathy.

8.
J Immunol ; 211(7): 1073-1081, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566492

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fibrotic age-related chronic lung disease characterized by the accumulation of senescent cells. Whether impaired immune response is responsible for the accumulation of senescent cells in the IPF lung remains unknown. In this study, we characterized the NK phenotype in IPF lungs via flow cytometry using 5-dodecanoylaminofluorescein di-ß-d-galactopyranoside, markers of tissue residence, and chemokine receptors. The effect of the lung microenvironment was evaluated using lung fibroblast (LF) conditioned media (CM), and the bleomycin-induced pulmonary fibrosis mouse model was used to assess the in vivo relationship between NK cells and the accumulation of senescent cells. We found that NK cells from the lower lobe of IPF patients exhibited immune-senescent and impaired CD57-NKG2A+ phenotype. We also observed that culture of NK cells from healthy donors in CM from IPF lower lobe lung fibroblasts induced a senescent-like phenotype and impaired cytotoxic capacity. There is an impaired NK recruitment by LF, and NKs presented decreased migration toward their CM. In addition, NK cell-depleted mice treated with bleomycin showed increased collagen deposition and accumulation of different populations of senescent cells compared with controls. The IPF lung microenvironment induces a dysfunctional NK phenotype limiting the clearance of lung senescent cells and the resolution of lung fibrosis. We propose that impaired NK activity could be one of the mechanisms responsible for perpetuating the accumulation of senescent cells in IPF lungs.


Assuntos
Antineoplásicos , Fibrose Pulmonar Idiopática , Camundongos , Animais , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Bleomicina/efeitos adversos , Fibrose , Antineoplásicos/farmacologia , Fibroblastos
9.
Eur Respir J ; 63(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918852

RESUMO

RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina , Quimiocina CXCL6/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia
10.
Ann Rheum Dis ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754983

RESUMO

OBJECTIVES: Vasculopathy emerges early in systemic sclerosis (SSc) and links to endothelial cell (EC) injury and angiogenesis. Understanding EC transcriptomes and epigenomes is crucial for unravelling the mechanisms involved. METHODS: Transcriptomes and chromatin accessibility were assessed by single-cell RNA sequencing and single-nucleus transposase-accessible chromatin sequencing. Immunofluorescent staining of skin and proteomics assay were employed to confirm the altered SSc EC phenotypes. Gain-of-function assay was used to evaluate the effects of ETS transcription factors on human dermal ECs (hDECs). RESULTS: Both control and SSc ECs shared transcriptomic signatures of vascular linages (arterial, capillary and venous ECs) and lymphatic ECs. Arterial ECs in SSc showed reduced number and increased expression of genes associated with apoptosis. Two distinct EC subpopulations, tip and proliferating ECs, were markedly upregulated in SSc, indicating enhanced proangiogenic and proliferative activities. Molecular features of aberrant SSc-ECs were associated with disease pathogenesis and clinical traits of SSc, such as skin fibrosis and digital ulcers. Ligand-receptor analysis demonstrated altered intercellular networks of SSc EC subpopulations with perivascular and immune cells. Furthermore, the integration of open chromatin profiles with transcriptomic analysis suggested an increased accessibility of regulatory elements for ETS family transcription factors in SSc ECs. Overexpression of ETS genes in hDECs suggested ELK4, ERF and ETS1 may orchestrate arterial apoptosis and dysregulated angiogenesis in SSc. CONCLUSIONS: This study unveils transcriptional and chromatin alterations in driving endovascular dysregulation in SSc, proposing ELK4, ERF and ETS1 as novel targets in ECs for addressing vascular complications in the condition.

11.
Rheumatology (Oxford) ; 63(3): 837-845, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310903

RESUMO

OBJECTIVE: Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS: Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS: Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS: SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Linfócitos T Reguladores , Humanos , Anfirregulina , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Pulmão , Doenças Pulmonares Intersticiais/imunologia , Células T de Memória , Escleroderma Sistêmico/imunologia
12.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142338

RESUMO

BACKGROUND: In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS: We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS: TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS: Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Cromatina , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fibroblastos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Fibrose , Bleomicina , Fatores de Transcrição/genética , RNA/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
13.
Respir Res ; 24(1): 116, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085855

RESUMO

BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) is an age-associated progressive lung disease with accumulation of scar tissue impairing gas exchange. Previous high-throughput studies elucidated the role of cellular heterogeneity and molecular pathways in advanced disease. However, critical pathogenic pathways occurring in the transition of fibroblasts from normal to profibrotic have been largely overlooked. METHODS: We used single cell transcriptomics (scRNA-seq) from lungs of healthy controls and IPF patients (lower and upper lobes). We identified fibroblast subclusters, genes and pathways associated with early disease. Immunofluorescence assays validated the role of MOXD1 early in fibrosis. RESULTS: We identified four distinct fibroblast subgroups, including one marking the normal-to-profibrotic state transition. Our results show for the first time that global downregulation of ribosomal proteins and significant upregulation of the majority of copper-binding proteins, including MOXD1, mark the IPF transition. We find no significant differences in gene expression in IPF upper and lower lobe samples, which were selected to have low and high degree of fibrosis, respectively. CONCLUSIONS: Early events during IPF onset in fibroblasts include dysregulation of ribosomal and copper-binding proteins. Fibroblasts in early stage IPF may have already acquired a profibrotic phenotype while hallmarks of advanced disease, including fibroblast foci and honeycomb formation, are still not evident. The new transitional fibroblasts we discover could prove very important for studying the role of fibroblast plasticity in disease progression and help develop early diagnosis tools and therapeutic interventions targeting earlier disease states.


Assuntos
Cobre , Fibrose Pulmonar Idiopática , Humanos , Cobre/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Fibrose
14.
PLoS Comput Biol ; 18(12): e1010761, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548438

RESUMO

Cells within a tumor microenvironment (TME) dynamically communicate and influence each other's cellular states through an intercellular communication network (ICN). In cancers, intercellular communications underlie immune evasion mechanisms of individual tumors. We developed an individualized causal analysis framework for discovering tumor specific ICNs. Using head and neck squamous cell carcinoma (HNSCC) tumors as a testbed, we first mined single-cell RNA-sequencing data to discover gene expression modules (GEMs) that reflect the states of transcriptomic processes within tumor and stromal single cells. By deconvoluting bulk transcriptomes of HNSCC tumors profiled by The Cancer Genome Atlas (TCGA), we estimated the activation states of these transcriptomic processes in individual tumors. Finally, we applied individualized causal network learning to discover an ICN within each tumor. Our results show that cellular states of cells in TMEs are coordinated through ICNs that enable multi-way communications among epithelial, fibroblast, endothelial, and immune cells. Further analyses of individual ICNs revealed structural patterns that were shared across subsets of tumors, leading to the discovery of 4 different subtypes of networks that underlie disparate TMEs of HNSCC. Patients with distinct TMEs exhibited significantly different clinical outcomes. Our results show that the capability of estimating individual ICNs reveals heterogeneity of ICNs and sheds light on the importance of intercellular communication in impacting disease development and progression.


Assuntos
Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transcriptoma/genética , Comunicação Celular , Microambiente Tumoral
15.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372943

RESUMO

Localized scleroderma (LS) is an autoimmune disease with both inflammatory and fibrotic components causing an abnormal deposition of collagen in the skin and underlying tissue, often leading to disfigurement and disability. Much of its pathophysiology is extrapolated from systemic sclerosis (SSc) since the histopathology findings in the skin are nearly identical. However, LS is critically understudied. Single-cell RNA sequencing (scRNA seq) technology provides a novel way to obtain detailed information at the individual cellular level, overcoming this barrier. Here, we analyzed the affected skin of 14 patients with LS (pediatric and adult) and 14 healthy controls. Fibroblast populations were the focus, since they are the main drivers of fibrosis in SSc. We identified 12 fibroblast subclusters in LS, which overall had an inflammatory gene expression (IFN and HLA-associated genes). A myofibroblast-like cluster (SFRP4/PRSS23) was more prevalent in LS subjects and shared many upregulated genes expressed in SSc-associated myofibroblasts, though it also had strong expression of CXCL9/10/11, known CXCR3 ligands. A CXCL2/IRF1 cluster identified was unique to LS, with a robust inflammatory gene signature, including IL-6, and according to cell communication analysis are influenced by macrophages. In summary, potential disease-propagating fibroblasts and associated gene signatures were identified in LS skin via scRNA seq.


Assuntos
Esclerodermia Localizada , Escleroderma Sistêmico , Adulto , Humanos , Criança , Esclerodermia Localizada/metabolismo , Esclerodermia Localizada/patologia , Análise da Expressão Gênica de Célula Única , Escleroderma Sistêmico/patologia , Fibrose , Fibroblastos/metabolismo , Pele/metabolismo , Transcriptoma
16.
J Biol Chem ; 295(13): 4171-4180, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071084

RESUMO

Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor ß (TGF-ß) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-ß signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-ß signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-ß signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-ß-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-ß-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-ß-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.


Assuntos
Proteína Fosfatase 2/genética , Escleroderma Sistêmico/genética , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteólise , Proteômica , Escleroderma Sistêmico/patologia , Transdução de Sinais/genética
17.
Ann Rheum Dis ; 80(11): 1453-1460, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34031030

RESUMO

OBJECTIVES: Although T cells have been implicated in the pathogenesis of systemic sclerosis (SSc), a comprehensive study of T-cell-mediated immune responses in the affected skin of patients with progressive SSc is lacking. Droplet-based single-cell transcriptome analysis of SSc skin biopsies opens avenues for dissecting patient-specific T-cell heterogeneity, providing a basis for identifying novel gene expression related to functional pathways associated with severity of SSc skin disease. METHODS: Single-cell RNA sequencing was performed by droplet-based sequencing (10x Genomics), focusing on 3729 CD3+ lymphocytes (867 cells from normal and 2862 cells from SSc skin samples) from skin biopsies of 27 patients with active SSc and 10 healthy donors. Confocal immunofluorescence microscopy of progressive SSc skin samples validated transcriptional results and visualised spatial localisations of T-cell subsets. RESULTS: We identified several subsets of recirculating and tissue-resident T cells in healthy and SSc skin that were associated with distinct signalling pathways. While most clusters shared a common gene expression signature between patients and controls, we identified a unique cluster of recirculating CXCL13+ T cells in SSc skin which expressed a T helper follicular-like gene expression signature and that appears to be poised to promote B-cell responses within the inflamed skin of patients. CONCLUSIONS: Current available therapies to reverse or even slow progression of SSc lead to broad killing of immune cells and consequent toxicities, including death. Identifying the precise immune mechanism(s) driving SSc pathogenesis could lead to innovative therapies that selectively target the aberrant immune response, resulting in better efficacy and less toxicity.


Assuntos
Esclerodermia Difusa/genética , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T/metabolismo , Estudos de Casos e Controles , Quimiocina CXCL13/metabolismo , Perfilação da Expressão Gênica , Humanos , Esclerodermia Difusa/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Pele/citologia , Transcriptoma
18.
Respir Res ; 22(1): 100, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823868

RESUMO

BACKGROUND: Whole lung tissue transcriptomic profiling studies in chronic obstructive pulmonary disease (COPD) have led to the identification of several genes associated with the severity of airflow limitation and/or the presence of emphysema, however, the cell types driving these gene expression signatures remain unidentified. METHODS: To determine cell specific transcriptomic changes in severe COPD, we conducted single-cell RNA sequencing (scRNA seq) on n = 29,961 cells from the peripheral lung parenchymal tissue of nonsmoking subjects without underlying lung disease (n = 3) and patients with severe COPD (n = 3). The cell type composition and cell specific gene expression signature was assessed. Gene set enrichment analysis (GSEA) was used to identify the specific cell types contributing to the previously reported transcriptomic signatures. RESULTS: T-distributed stochastic neighbor embedding and clustering of scRNA seq data revealed a total of 17 distinct populations. Among them, the populations with more differentially expressed genes in cases vs. controls (log fold change >|0.4| and FDR = 0.05) were: monocytes (n = 1499); macrophages (n = 868) and ciliated epithelial cells (n = 590), respectively. Using GSEA, we found that only ciliated and cytotoxic T cells manifested a trend towards enrichment of the previously reported 127 regional emphysema gene signatures (normalized enrichment score [NES] = 1.28 and = 1.33, FDR = 0.085 and = 0.092 respectively). Among the significantly altered genes present in ciliated epithelial cells of the COPD lungs, QKI and IGFBP5 protein levels were also found to be altered in the COPD lungs. CONCLUSIONS: scRNA seq is useful for identifying transcriptional changes and possibly individual protein levels that may contribute to the development of emphysema in a cell-type specific manner.


Assuntos
Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Adulto , Idoso , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA/metabolismo , Proteínas de Ligação a RNA/biossíntese , Índice de Gravidade de Doença , Adulto Jovem
19.
FASEB J ; 34(8): 9884-9898, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32596871

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by altered epithelial cell phenotypes, which are associated with myofibroblast accumulation in the lung. Atypical alveolar epithelial cells in IPF express molecular markers of airway epithelium. Polymorphisms within and around Toll interacting protein (TOLLIP) are associated with the susceptibility to IPF and mortality. However, the functional role of TOLLIP in IPF is unknown. Using lung tissues from IPF and control subjects, we showed that expression of TOLLIP gene in the lung parenchyma is globally lower in IPF compared to controls. Lung cells expressing significant levels of TOLLIP include macrophages, alveolar type II, and basal cells. TOLLIP protein expression is lower in the parenchyma of IPF lungs but is expressed in the atypical epithelial cells of the distal fibrotic regions. Using overexpression and silencing approaches, we demonstrate that TOLLIP protects cells from bleomycin-induced apoptosis using primary bronchial epithelial cells and BEAS-2B cells. The protective effects are mediated by reducing mitochondrial reactive oxygen species (ROS) levels and upregulating autophagy. Therefore, global downregulation of the TOLLIP gene in IPF lungs may predispose injured lung epithelial cells to apoptosis and to the development of IPF.


Assuntos
Apoptose , Bleomicina/efeitos adversos , Brônquios/citologia , Células Epiteliais/citologia , Fibrose Pulmonar Idiopática/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Substâncias Protetoras , Antibióticos Antineoplásicos/efeitos adversos , Autofagia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L510-L521, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432710

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common and devastating of the interstitial lung diseases. Epithelial dysfunction is thought to play a prominent role in disease pathology, and we sought to characterize secreted signals that may contribute to disease pathology. Transcriptional profiling of senescent type II alveolar epithelial cells from mice with epithelial-specific telomere dysfunction identified the transforming growth factor-ß family member, growth and differentiation factor 15 (Gdf15), as the most significantly upregulated secreted protein. Gdf15 expression is induced in response to telomere dysfunction and bleomycin challenge in mice. Gdf15 mRNA is expressed by lung epithelial cells, and protein can be detected in peripheral blood and bronchoalveolar lavage following bleomycin challenge in mice. In patients with IPF, GDF15 mRNA expression in lung tissue is significantly increased and correlates with pulmonary function. Single-cell RNA sequencing of human lungs identifies epithelial cells as the primary source of GDF15, and circulating concentrations of GDF15 are markedly elevated and correlate with disease severity and survival in multiple independent cohorts. Our findings suggest that GDF15 is an epithelial-derived secreted protein that may be a useful biomarker of epithelial stress and identifies IPF patients with poor outcomes.


Assuntos
Células Epiteliais Alveolares/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fibrose Pulmonar Idiopática/genética , Transcriptoma , Idoso , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Animais , Bleomicina/administração & dosagem , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Testes de Função Respiratória , Índice de Gravidade de Doença , Análise de Sobrevida , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA