Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 88(5): 571-576, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383669

RESUMO

This study demonstrates the effect of fermented botanical product (FBP) on Ralstonia pseudosolanacearum-induced bacterial wilt disease and unravels its action mechanism. Soaking with diluted FBP solutions (0.1%-0.5%) significantly suppressed bacterial wilt in tomato plants, and FBP-treated tomato plants grew well against R. pseudosolanacearum infection. Growth assays showed that FBP had no antibacterial effect but promoted R. pseudosolanacearum growth. In contrast, few or no R. pseudosolanacearum cells were detected in aerial parts of tomato plants grown in FBP-soaked soil. Subsequent infection assays using the chemotaxis-deficient mutant (ΔcheA) or the root-dip inoculation method revealed that FBP does not affect pathogen migration to plant roots during infection. Moreover, FBP-pretreated tomato plants exhibited reduced bacterial wilt in the absence of FBP. These findings suggest that the plant, but not the pathogen, could be affected by FBP, resulting in an induced resistance against R. pseudosolanacearum, leading to a suppressive effect on bacterial wilt.


Assuntos
Fermentação , Fertilizantes , Doenças das Plantas , Ralstonia , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Ralstonia/efeitos dos fármacos , Ralstonia/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia
2.
Biosci Biotechnol Biochem ; 85(3): 728-738, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624773

RESUMO

3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) have tremendous potential markets in many industries. This study evaluated the simultaneous biosynthesis of the 2 compounds using the new psychrophile-based simple biocatalyst (PSCat) reaction system. The PSCat method is based on the expression of glycerol dehydratase, 1,3-propanediol dehydrogenase, and aldehyde dehydrogenase from Klebsiella pneumoniae in Shewanella livingstonensis Ac10 and Shewanella frigidimarina DSM 12253, individually. Heat treatment at 45 °C for 15 min deactivated the intracellular metabolic flux, and the production process was started after adding substrate, cofactor, and coenzyme. In the solo production process after 1 h, the maximum production of 3-HP was 62.0 m m. For 1,3-PDO, the maximum production was 25.0 m m. In the simultaneous production process, productivity was boosted, and the production of 3-HP and 1,3-PDO increased by 13.5 and 4.9 m m, respectively. Hence, the feasibility of the individual production and the simultaneous biosynthesis system were verified in the new PSCat approach.


Assuntos
Ácido Láctico/análogos & derivados , Propilenoglicóis/metabolismo , Biocatálise , Temperatura Alta , Klebsiella pneumoniae/enzimologia , Ácido Láctico/metabolismo , Shewanella/enzimologia
3.
Biosci Biotechnol Biochem ; 85(3): 697-702, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624770

RESUMO

We have demonstrated that chemotaxis to l-malate facilitated motility of Ralstonia pseudosolanacearum MAFF 106611, a causative agent of bacterial wilt, to plant roots. Here, we evaluated the assumption that the disruption of chemotaxis to l-malate leads to inhibition of plant infection by R. pseudosolanacearum MAFF 106611. Chemotactic assays revealed that chemotaxis to l-malate was completely or partially inhibited in the presence of l-, d-, and dl-malate, respectively. Moreover, l-malate served as a carbon and energy source for R. pseudosolanacearum MAFF 106611, while d-malate inhibited the growth of this bacterium. In the sand-soak inoculation virulence assay for tomato plants, the addition of l-, d-, and dl-malate to sand suppressed the plant infection. We concluded that supplementation of l- and dl-malate suppresses tomato plant infection with R. pseudosolanacearum MAFF 106611 by disrupting its chemotaxis to l-malate, while d-malate suppresses it by both the disruption of l-malate chemotaxis and inhibition of growth.


Assuntos
Quimiotaxia/efeitos dos fármacos , Raízes de Plantas/microbiologia , Ralstonia/patogenicidade , Solanum lycopersicum/microbiologia , Malatos/farmacologia , Ralstonia/efeitos dos fármacos , Ralstonia/crescimento & desenvolvimento
4.
Biosci Biotechnol Biochem ; 84(9): 1948-1957, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32538292

RESUMO

Pseudomonas protegens CHA0, known as plant-growth-promoting rhizobacterium, showed positive chemotactic responses toward proteinaceous L-amino acids. Genomic analysis revealed that P. protegens CHA0 possesses four putative chemoreceptors for amino acids (designated CtaA, CtaB, CtaC, and CtaD, respectively). Pseudomonas aeruginosa PCT2, a mutant defective in chemotaxis to amino acids, harboring a plasmid containing each of ctaA, ctaB, ctaC, and ctaD showed chemotactic responses to 20, 4, 4, and 11 types of amino acids, respectively. To enhance chemotaxis toward amino acids, we introduced the plasmids containing ctaA, ctaB, ctaC, or ctaD into P. protegens CHA0. By overexpression of the genes, we succeeded in enhancing chemotaxis toward more than half of the tested ligands. However, unexpectedly, the P. protegens CHA0 transformants showed unchanged or decreased responses to some amino acids when compared to wild-type CHA0. We speculate that alternation of expression of a chemoreceptor may affect the abundance of other chemoreceptors. ABBREVIATIONS: cDNA: complementary DNA; LBD: ligand-binding domain; MCP: methyl-accepting chemotaxis protein; PDC: PhoQ/DcuS/CitA; PGPR: plant-growth-promoting rhizobacteria; qRT-PCR: quantitative reverse transcription PCR.


Assuntos
Aminoácidos/metabolismo , Quimiotaxia/genética , Proteínas Quimiotáticas Aceptoras de Metil/genética , Desenvolvimento Vegetal , Pseudomonas/citologia , Pseudomonas/fisiologia , Expressão Gênica , Ligantes , Plasmídeos/genética , Pseudomonas/genética , Transformação Genética
5.
Microbiology (Reading) ; 163(2): 233-242, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27926824

RESUMO

Ralstonia pseudosolanacearum Ps29 is attracted by nonmetabolizable d-malate, an unnatural enantiomer. Screening of a complete collection of single-mcp-gene deletion mutants of Ps29 revealed that the RSc1156 homologue is a chemosensor for d-malate. An RSc1156 homologue deletion mutant of Ps29 showed decreased but significant responses to d-malate, suggesting the existence of another d-malate chemosensor. McpM previously had been identified as a chemosensor for l-malate. We constructed an RSc1156 homologue mcpM double deletion mutant and noted that this mutant failed to respond to d-malate; thus, the RSc1156 homologue and McpM are the major chemosensors for d-malate in this organism. To further characterize the ligand specificities of the RSc1156 homologue and McpM, we constructed a Ps29 derivative (designated K18) harbouring deletions in 18 individual mcp genes, including mcpM and RSc1156. K18 harbouring the RSc1156 homologue responded strongly to l-tartrate and d-malate and moderately to d-tartrate, but not to l-malate or succinate. K18 harbouring mcpM responded strongly to l-malate and d-tartrate and moderately to succinate, fumarate and d-malate. Ps29 utilizes l-malate and l-tartrate, but not d-malate. We therefore concluded that l-tartrate and l-malate are natural ligands of the RSc1156 homologue and McpM, respectively, and that chemotaxis toward d-malate is a fortuitous response by the RSc1156 homologue and McpM in Ps29. We propose re-designation of the RSc1156 homologue as McpT. In tomato plant infection assays, the mcpT deletion mutant of highly virulent R. pseudosolanacearum MAFF106611 was as infectious as wild-type MAFF106611, suggesting that McpT-mediated chemotaxis does not play an important role in tomato plant infection.


Assuntos
Quimiotaxia/fisiologia , Malatos/metabolismo , Ralstonia/metabolismo , Tartaratos/metabolismo , Quimiotaxia/genética , Deleção de Genes , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia/classificação , Ralstonia/patogenicidade , Estereoisomerismo , Ácido Succínico/metabolismo
6.
Microbiology (Reading) ; 163(12): 1880-1889, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29134930

RESUMO

Ralstonia pseudosolanacearum Ps29 showed repellent responses to alcohols including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,3-propanediol and prenol. R. pseudosolanacearum Ps29 possesses 22 putative chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). To identify a MCP involved in negative chemotaxis to ethanol, we measured ethanol chemotaxis of a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29. However, all the mutants showed repellent responses to ethanol comparable to that of the wild-type strain. We constructed a stepwise- and multiple-mcp gene deletion mutant collection of R. pseudosolanacearum Ps29. Analysis of the collection found that an 18-mcp-knockout mutant (strain POC18) failed to respond to ethanol. Complementation analysis using POC18 as the host strain found that introduction of mcpA, mcpT, mcp09, mcpM, mcp15 and mcp19 restored the ability of POC18 to respond to ethanol. However, unexpectedly, strain POC10II, harbouring unmarked deletions in 10 mcp genes including mcpA, mcpT, mcp09, mcpM, mcp15 and mcp19 showed repellent responses to ethanol comparable to that of wild-type Ps29. We hypothesised that multiple mcp mutations in POC18 led to a shortage of MCPs required for formation of functional chemoreceptor arrays. When pPS16 (encoding McpP involved in phosphate chemotaxis) was introduced into POC18, POC18(pPS16) did not respond to phosphate. This result supports the hypothesis. But, genetic analysis revealed that MCPs (Mcp07, Mcp13, Mcp20 and Mcp21) are not essential for ethanol chemotaxis. Thus, we conclude that many and unspecified MCPs are involved in negative chemotaxis to ethanol in R. pseudosolanacearum Ps29.

7.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159797

RESUMO

For the efficient production of target metabolites from carbohydrates, syngas, or H2-CO2 by genetically engineered Moorella thermoacetica, the control of acetate production (a main metabolite of M. thermoacetica) is desired. Although propanediol utilization protein (PduL) was predicted to be a phosphotransacetylase (PTA) involved in acetate production in M. thermoacetica, this has not been confirmed. Our findings described herein directly demonstrate that two putative PduL proteins, encoded by Moth_0864 (pduL1) and Moth_1181 (pduL2), are involved in acetate formation as PTAs. To disrupt these genes, we replaced each gene with a lactate dehydrogenase gene from Thermoanaerobacter pseudethanolicus ATCC 33223 (T-ldh). The acetate production from fructose as the sole carbon source by the pduL1 deletion mutant was not deficient, whereas the disruption of pduL2 significantly decreased the acetate yield to approximately one-third that of the wild-type strain. The double-deletion (both pduL genes) mutant did not produce acetate but produced only lactate as the end product from fructose. These results suggest that both pduL genes are associated with acetate formation via acetyl-coenzyme A (acetyl-CoA) and that their disruption enables a shift in the homoacetic pathway to the genetically synthesized homolactic pathway via pyruvate.IMPORTANCE This is the first report, to our knowledge, on the experimental identification of PTA genes in M. thermoacetica and the shift of the native homoacetic pathway to the genetically synthesized homolactic pathway by their disruption on a sugar platform.


Assuntos
Acetatos/metabolismo , Fermentação , Engenharia Genética , Moorella/genética , Moorella/metabolismo , Acetilcoenzima A/metabolismo , Anaerobiose , Carbono/metabolismo , L-Lactato Desidrogenase/genética , Moorella/enzimologia , Fosfato Acetiltransferase/metabolismo , Propilenoglicóis/metabolismo , Thermoanaerobacter/genética
8.
Appl Environ Microbiol ; 81(21): 7420-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276117

RESUMO

Sequence analysis has revealed the presence of 22 putative methyl-accepting chemotaxis protein (mcp) genes in the Ralstonia pseudosolanacearum GMI1000 genome. PCR analysis and DNA sequencing showed that the highly motile R. pseudosolanacearum strain Ps29 possesses homologs of all 22 R. pseudosolanacearum GMI1000 mcp genes. We constructed a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29 by unmarked gene deletion. Screening of the mutant collection revealed that R. pseudosolanacearum Ps29 mutants of RSp0507 and RSc0606 homologs were defective in chemotaxis to l-malate and amino acids, respectively. RSp0507 and RSc0606 homologs were designated mcpM and mcpA. While wild-type R. pseudosolanacearum strain Ps29 displayed attraction to 16 amino acids, the mcpA mutant showed no response to 12 of these amino acids and decreased responses to 4 amino acids. We constructed mcpA and mcpM deletion mutants of highly virulent R. pseudosolanacearum strain MAFF106611 to investigate the contribution of chemotaxis to l-malate and amino acids to tomato plant infection. Neither single mutant exhibited altered virulence for tomato plants when tested by root dip inoculation assays. In contrast, the mcpM mutant (but not the mcpA mutant) was significantly less infectious than the wild type when tested by a sand soak inoculation assay, which requires bacteria to locate and invade host roots from sand. Thus, McpM-mediated chemotaxis, possibly reflecting chemotaxis to l-malate, facilitates R. pseudosolanacearum motility to tomato roots in sand.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Malatos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Proteínas Quimiotáticas Aceptoras de Metil , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ralstonia solanacearum/genética , Análise de Sequência de DNA , Virulência
9.
Int J Syst Evol Microbiol ; 65(10): 3570-3575, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297040

RESUMO

Gram-stain-negative, facultatively anaerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain HUA-2T, was isolated from an alginate-degrading microbial consortium. Strain HUA-2T was related to Dysgonomonas capnocytophagoides JCM 16697T, Dysgonomonas macrotermitis JCM 19375T and Dysgonomonas mossii CCUG 43457T with 95.1 %, 94.1 % and 92.1 % 16S rRNA gene sequence similarity, respectively. The optimal growth temperature and pH for strain HUA-2T were 35 °C and pH 8.0, respectively. Enzyme production, major fermentation products from glucose, and the major cellular fatty acids were different from those of D. capnocytophagoides CCUG 17966T or other members of the genus Dysgonomonas. Therefore, strain HUA-2T is proposed to represent a novel species of the genus Dysgonomonas, for which we propose the name Dysgonomonas alginatilytica sp. nov. The type strain is HUA-2T ( = DSM 100214T = HUT 8134T).


Assuntos
Alginatos/metabolismo , Bacteroidetes/classificação , Consórcios Microbianos , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Japão , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
10.
Appl Microbiol Biotechnol ; 99(3): 1165-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421564

RESUMO

Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Técnicas de Cultura Celular por Lotes , Expressão Gênica , Genes Bacterianos , Redes e Vias Metabólicas/genética
11.
J Ind Microbiol Biotechnol ; 42(10): 1319-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254042

RESUMO

We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.


Assuntos
Ácido Aspártico/biossíntese , Biocatálise , Shewanella/metabolismo , Aspartato Amônia-Liase/metabolismo , Biotecnologia/métodos , Estabilidade Enzimática , Reutilização de Equipamento , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Temperatura Alta , Malatos/metabolismo , Shewanella/enzimologia , Shewanella/genética
12.
Appl Microbiol Biotechnol ; 98(22): 9207-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086614

RESUMO

Thraustochytrid production of polyunsaturated fatty acids and xanthophylls have been generally sourced from crop-derived substrates, making the exploration of alternative feedstocks attractive since they promise increased sustainability and lower production costs. In this study, a distinct two-stage fermentation system was conceptualized for the first time, using the brown seaweed sugar mannitol as substrate for the intermediary biocatalyst Gluconobacter oxydans, an acetic acid bacterium, along with the marine thraustochytrid Aurantiochytrium sp. to produce the value-added lipids and xanthophylls. Jar fermenter culture resulted in seaweed mannitol conversion to fructose with an efficiency of 83 % by G. oxydans and, after bacteriostasis with sea salts, production of astaxanthin and docosahexaenoic acid by Aurantiochytrium sp. KH105. Astaxanthin productivity was high at 3.60 mg/L/day. This new system, therefore, widens possibilities of obtaining more varieties of industrially valuable products including foods, cosmetics, pharmaceuticals, and biofuel precursor lipids from seaweed fermentation upon the use of suitable thraustochytrid strains.


Assuntos
Ácido Acético/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Gluconobacter oxydans/metabolismo , Metabolismo dos Lipídeos , Manitol/metabolismo , Estramenópilas/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Fermentação , Gluconobacter oxydans/crescimento & desenvolvimento , Alga Marinha/química , Estramenópilas/crescimento & desenvolvimento , Xantofilas/isolamento & purificação , Xantofilas/metabolismo
13.
Biosci Biotechnol Biochem ; 78(4): 695-700, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036969

RESUMO

(R)-1,3-butanediol ((R)-1,3-BD) is an important substrate for the synthesis of industrial chemicals. Despite its large demand, a bioprocess for the efficient production of 1,3-BD from renewable resources has not been developed. We previously reported the construction of recombinant Escherichia coli that could efficiently produce (R)-1,3-BD from glucose. In this study, the fermentation conditions were optimized to further improve 1,3-BD production by the recombinant strain. A batch fermentation was performed with an optimized overall oxygen transfer coefficient (82.3 h(-1)) and pH (5.5); the 1,3-BD concentration reached 98.5 mM after 36 h with high-yield (0.444 mol (mol glucose)(-1)) and a high maximum production rate (3.63 mM h(-1)). In addition, a fed-batch fermentation enabled the recombinant strain to produce 174.8 mM 1,3-BD after 96 h cultivation with a yield of 0.372 mol (mol glucose)(-1), a maximum production rate of 3.90 mM h(-1), and a 98.6% enantiomeric excess (% ee) of (R)-1,3-BD.


Assuntos
Reatores Biológicos/microbiologia , Butileno Glicóis/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Oxigênio/metabolismo , Técnicas de Cultura Celular por Lotes , Escherichia coli/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio
14.
Appl Environ Microbiol ; 79(23): 7241-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038698

RESUMO

Bacterial chemotaxis influences the ability of bacteria to survive and thrive in most environments, including polluted ones. Despite numerous reports of the phenotypic characterization of chemotactic bacteria, only a few molecular details of chemoreceptors for aromatic pollutants have been described. In this study, the molecular basis of chemotaxis toward an environmentally toxic chlorinated aromatic pollutant, 4-chloroaniline (4CA), was evaluated. Among the three Pseudomonas spp. tested, Pseudomonas aeruginosa PAO1 exhibited positive chemotaxis both to the nonmetabolizable 4CA, where 4-chloroacetanilide was formed as a dead-end transformation product, and to the metabolizable catechol. Molecular analysis of all 26 mutants with a disrupted methyl-accepting chemotaxis gene revealed that CtpL, a chromosomally encoded chemoreceptor, was responsible for the positive chemotactic response toward 4CA. Since CtpL has previously been described to be a major chemoreceptor for inorganic phosphate at low concentrations in PAO1, this report describes a fortuitous ability of CtpL to function toward aromatic pollutants. In addition, its regulation not only was dependent on the presence of the chemoattractant inducer but also was regulated by conditions of phosphate starvation. These results expand the range of known chemotactic transducers and their function in the environmental bacterium PAO1.


Assuntos
Compostos de Anilina/metabolismo , Catecóis/metabolismo , Quimiotaxia , Poluentes Ambientais/metabolismo , Pseudomonas aeruginosa/fisiologia , Receptores de Superfície Celular/metabolismo , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Receptores de Superfície Celular/genética
15.
Front Bioeng Biotechnol ; 11: 1255582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662428

RESUMO

Phosphite dehydrogenase (PtxD) is a promising enzyme for NAD(P)H regeneration. To expand the usability of PtxD, we cloned, expressed, and analyzed PtxD from the marine cyanobacterium Cyanothece sp. ATCC 51142 (Ct-PtxD). Ct-PtxD exhibited maximum activity at pH 9.0°C and 50°C and high stability over a wide pH range of 6.0-10.0. Compared to previously reported PtxDs, Ct-PtxD showed increased resistance to salt ions such as Na+, K+, and NH4 +. It also exhibited high tolerance to organic solvents such as ethanol, dimethylformamide, and methanol when bound to its preferred cofactor, NAD+. Remarkably, these organic solvents enhanced the Ct-PtxD activity while inhibiting the PtxD activity of Ralstonia sp. 4506 (Rs-PtxD) at concentrations ranging from 10% to 30%. Molecular electrostatic potential analysis showed that the NAD+-binding site of Ct-PtxD was rich in positively charged residues, which may attract the negatively charged pyrophosphate group of NAD+ under high-salt conditions. Amino acid composition analysis revealed that Ct-PtxD contained fewer hydrophobic amino acids than other PtxD enzymes, which reduced the hydrophobicity and increased the hydration of protein surface under low water activity. We also demonstrated that the NADH regeneration system using Ct-PtxD is useful for the coupled chiral conversion of trimethylpyruvic acid into L-tert-leucine using leucine dehydrogenase under high ammonium conditions, which is less supported by the Rs-PtxD enzyme. These results imply that Ct-PtxD might be a potential candidate for NAD(P)H regeneration in industrial applications under the reaction conditions containing salt and organic solvent.

16.
Bioresour Technol ; 376: 128853, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898569

RESUMO

Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.


Assuntos
Compostos de Amônio , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Cloreto de Sódio/farmacologia , Metano , Sedimentos Geológicos , Estresse Salino
18.
J Ind Microbiol Biotechnol ; 39(12): 1801-10, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22892886

RESUMO

Aniline and chlorinated anilines (CAs) are classified as priority pollutants; therefore, an effective method for detection and monitoring is required. In this study, a green-fluorescence protein-based bioreporter for the detection of aniline and CAs was constructed in Escherichia coli DH5α, characterized and tested with soil and wastewater. The sensing capability relied on the regulatory control between a two-component regulatory protein, TodS/TodT, and the P( todX ) promoter of Pseudomonas putida T-57 (PpT57), since the gene expression of todS, todT, and todC2 are positively induced with 4-chloroaniline. The bioreporter system (DH5α/pPXGFP-pTODST) is markedly unique with the two co-existing plasmids. The inducibility of the fluorescence response was culture-medium- and time-dependent. Cells grown in M9G medium exhibited a low background fluorescence level and were readily induced by 4CA after 3-h exposure, reaching the maximum induction level at 9 h. When tested with benzene, toluene, ethyl-benzene and xylene, aniline and CAs, the response data were best fit by a sigmoidal dose-response relationship, from which the K(½) value was determined for the positive effectors. 3CA and 4CA were relatively powerful inducers, while some poly-chlorinated anilines could also induce green fluorescence protein expression. The results indicated a broader recognition range of PpT57'sTodST than previously reported for P. putida. The test results with environmental samples were reliable, indicating the potential application of this bioreporter in the ecotoxicology assessment and bioremediation of areas contaminated with aniline- and/or CAs.


Assuntos
Compostos de Anilina/análise , Escherichia coli/genética , Genes Reporter , Compostos de Anilina/farmacologia , Benzeno/análise , Benzeno/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Engenharia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Pseudomonas putida/genética , Tolueno/análise , Tolueno/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Biosci Bioeng ; 132(5): 445-450, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34380602

RESUMO

Psychrophilic enzymes are generally active at low temperatures, and their functions have attracted much interest in food processing, biochemical research, and chemical industry. However, their activities are usually lost above their growth temperature because of their flexible and unstable structure. Here, we unexpectedly found that a homodimeric NADP-dependent malic enzyme from a psychrophilic bacterium, Shewanella livingstonensis Ac10 (SL-ME) showed sufficient activity with 60°C treatment, similar to its counterpart from mesophilic Escherichia coli (MaeB). Consistently, SL-ME and MaeB irreversibly denatured at 71.9°C and 64.5°C, respectively. Therefore, SL-ME shows robust catalytic activity, which appears to be advantageous for its application in the bioconversion of NADP to NADPH, an essential ingredient for membrane phospholipid synthesis.


Assuntos
Shewanella , Temperatura Baixa , NADP , Temperatura
20.
J Biosci Bioeng ; 129(2): 160-164, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31506242

RESUMO

Bioconversion from inexpensive renewable resource, such as biomass, to liquid fuel is one of the promising technologies to reduce the use of petroleum. We previously reported the genetically engineered Moorella thermoacetica could produce ethanol from the lignocellulosic feedstock. However, it was still unclear which carbon source in the substrate was preferentially consumed to produce ethanol. To identify the hierarchy of the sugar utilization during ethanol fermentation of this strain, we analyzed the sugar composition of lignocellulosic feedstock, and consumption rate of sugars during the fermentation process. The hydrolysates after acid pretreatment and enzymatic saccharification contained glucose, xylose, galactose, arabinose, and mannose. Time course data suggested that xylose was the most preferred carbon source among those sugars during ethanol fermentation. Ethanol yield was 0.40 ± 0.06 and 0.40 ± 0.12 g/g-total sugar, from lignocellulosic hydrolysates of Japanese cedar (Cryptomeria japonica) and rice straw (Oryza sativa), respectively. The results demonstrated that the genetically engineered M. thermoacetica is a promising candidate for thermophilic ethanol fermentation of lignocellulosic feedstocks, especially hemicellulosic sugars.


Assuntos
Etanol/metabolismo , Lignina/metabolismo , Moorella/metabolismo , Açúcares/metabolismo , Fermentação , Engenharia Genética , Temperatura Alta , Hidrólise , Moorella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA