Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Shokuhin Eiseigaku Zasshi ; 63(3): 105-108, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35858794

RESUMO

A rapid determination method for emergency response to health crisis caused by metals in foods, was developed using microwave decomposition equipment and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The method was assessed for 18 elements (Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl and Zn) in 5 kinds of beverages and 7 kinds of foods. A single-laboratory method validation study was performed using food samples added with 20 mg/kg of each metal. Trueness was 88-108% and intralaboratory reproducibility was 0.2-11.3%. Time required for analysis was less than 3 hr. Thus, the presented method could be useful for rapid analysis of metals involved food poisoning cases.


Assuntos
Metais , Oligoelementos , Metais/análise , Micro-Ondas , Reprodutibilidade dos Testes , Espectrofotometria Atômica/métodos , Oligoelementos/análise
2.
Breed Sci ; 69(3): 529-535, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598088

RESUMO

Common cutworm (CCW) is a serious herbivorous insect pest of soybean. Previously, we conducted an antixenosis bioassay (measuring feeding preference) with CCW using recombinant inbred lines (RILs) derived from a cross between a wild soybean (Glycine soja) collected in Hiroshima prefecture (JP110755) and the leading cultivar, Fukuyutaka. The analysis revealed quantitative trait loci (QTLs) for antixenosis resistance, qRslx3 and qRslx4. In the present study we developed another RIL population using Fukuyutaka and a different G. soja, collected in Kumamoto prefecture (G406). An analysis revealed an antixenosis resistance QTL on chromosome 7, and the resistant allele of the QTL was derived from G406. The chromosomal position of the QTL was almost the same as that of CCW-2, a previously-reported antibiosis resistance QTL for CCW, detected in a F2 population derived from a cross between Fukuyutaka and a resistant cultivar Himeshirazu. These QTLs could be the same locus; however, G406 and Himeshirazu are likely to possess different alleles, because Himeshirazu allele exhibits no antixenosis effect. We expect that pyramiding of the resistance QTLs derived from G. soja will contribute to the development of CCW resistant cultivars.

3.
Breed Sci ; 69(2): 345-351, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481844

RESUMO

Food contamination by cadmium (Cd) is a serious threat to human health. Thus, it is imperative to prevent Cd accumulation in staple crops like soybean. The development of low Cd accumulating cultivars is an effective solution. To this end, it is essential to identify the gene(s) controlling seed Cd accumulation. Although Glyma.09G055600 (GmHMA3) seems to be associated with Cd accumulation in soybean, it has not been established if it is responsible for seed Cd accumulation. In the present study, the effect of GmHMA3 on seed Cd accumulation in soybean was validated using three independent GmHMA3 mutants isolated from an ethyl methanesulfonate-induced soybean mutant library. Each of mutant had an amino acid substitution in GmHMA3 and segregating progenies were developed by crossing the original cultivar with each of the three mutants. The relationship between these three mutations and seed Cd accumulation was investigated. While two of them significantly increased seed Cd accumulation corresponding to previous reports of a natural missense mutation in GmHMA3, the other slightly decreased seed Cd accumulation. Overall, these results indicate that GmHMA3 is responsible for seed Cd accumulation in soybean.

4.
Plant J ; 89(3): 527-539, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27775214

RESUMO

Triterpenoid saponins are major components of secondary metabolites in soybean seeds and are divided into two groups: group A saponins, and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins. The aglycone moiety of group A saponins consists of soyasapogenol A (SA), which is an oxidized ß-amyrin product, and the aglycone moiety of the DDMP saponins consists of soyasapogenol B (SB). Group A saponins produce a bitter and astringent aftertaste in soy products, whereas DDMP saponins have known health benefits for humans. We completed map-based cloning and characterization of the gene Sg-5, which is responsible for SA biosynthesis. The naturally occurring sg-5 mutant lacks group A saponins and has a loss-of-function mutation (L164*) in Glyma15g39090, which encodes the cytochrome P450 enzyme, CYP72A69. An enzyme assay indicated the hydroxylase activity of recombinant CYP72A69 against SB, which also suggested the production of SA. Additionally, induced Glyma15g39090 mutants (R44* or S348P) lacked group A saponins similar to the sg-5 mutant, indicating that Glyma15g39090 corresponds to Sg-5. Endogenous levels of DDMP saponins were higher in the sg-5 mutant than in the wild-type lines due to the loss of the enzyme activity that converts SB to SA. Interestingly, the genomes of palaeopolyploid soybean and the closely related common bean carry multiple Sg-5 paralogs in a genomic region syntenic to the soybean Sg-5 region. However, SA did not accumulate in common bean samples, suggesting that Sg-5 activity evolved after gene duplication event(s). Our results demonstrate that metabolic switching of undesirable saponins with beneficial saponins can be achieved in soybean by disabling Sg-5.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Saponinas/metabolismo , Sequência de Bases , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Mutação , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Filogenia , Proteínas de Plantas/genética , Saponinas/química , Glycine max/genética , Triterpenos/química , Triterpenos/metabolismo
5.
Plant Cell Physiol ; 59(4): 792-805, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401289

RESUMO

Soyasaponins are specialized metabolites present in soybean seeds that affect the taste and quality of soy-based foods. The composition of the sugar chains attached to the aglycone moiety of soyasaponins is regulated by genetic loci such as sg-1, sg-3 and sg-4. Here, we report the cloning and characterization of the Sg-3 gene, which is responsible for conjugating the terminal (third) glucose (Glc) at the C-3 sugar chain of soyasaponins. The gene Glyma.10G104700 is disabled in the sg-3 cultivar, 'Mikuriya-ao', due to the deletion of genomic DNA that results in the absence of a terminal Glc residue on the C-3 sugar chain. Sg-3 encodes a putative glycosyltransferase (UGT91H9), and its predicted protein sequence has a high homology with that of the product of GmSGT3 (Glyma.08G181000; UGT91H4), which conjugates rhamnose (Rha) to the third position of the C-3 sugar chain in vitro. A recombinant Glyma.10G104700 protein could utilize UDP-Glc as a substrate to conjugate the third Glc to the C-3 sugar chain, and introducing a functional Glyma.10G104700 transgene into the mutant complemented the sg-3 phenotype. Conversely, induction of a premature stop codon mutation in Glyma.10G104700 (W270*) resulted in the sg-3 phenotype, suggesting that Glyma.10G104700 was Sg-3. The gmsgt3 (R339H) mutant failed to accumulate soyasaponins with the third Rha at the C-3 sugar chain, and the third Glc and Rha conjugations were both disabled in the sg-3 gmsgt3 double mutant. These results demonstrated that Sg-3 and GmSGT3 are non-redundantly involved in conjugation of the third Glc and Rha at the C-3 sugar chain of soyasaponins, respectively.


Assuntos
Genes de Plantas , Variação Genética , Glycine max/genética , Proteínas de Plantas/genética , Saponinas/genética , Açúcares/metabolismo , Alelos , Sequência de Aminoácidos , Estudos de Associação Genética , Teste de Complementação Genética , Glicosiltransferases/metabolismo , Mutação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Saponinas/química , Saponinas/metabolismo , Transgenes
6.
Breed Sci ; 68(2): 177-187, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875601

RESUMO

Single seed weight (SSW), or seed size, is a seed yield components (SYC) in soybean, and it is suggested that the genetic factors regulating SSW are involved in the control of other SYCs. The quantitative trait loci (QTLs) for SSW and their effects on the other SYCs were investigated using a recombinant inbred line population derived from typical small- and large-seeded cultivars that were cultivated in two different environments. QTL analysis detected four environmentally stable QTLs for SSW, two of which coincided with the defined loci, qSw17-1 and Ln. The effects of the other loci, qSw12-1 and qSw13-1, were confirmed by analyzing residual heterozygous line progenies derived from the recombinant population. These four QTL regions were also involved in the control of an additional SYC, namely the large-seeded allele at each locus that reduced either the number of pods per plant or the number of ovules per pod. These results suggest the presence of at least two different regulatory mechanisms for SSW. Isolation of genes responsible for these QTLs provides an important tool in the understanding and utilization of SSW diversity for soybean breeding.

7.
Breed Sci ; 67(2): 151-158, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28588392

RESUMO

Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism (mog) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf (rl) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD (PPD) that regulates arrest of cell divisions in meristematic cells. We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.

8.
Proc Natl Acad Sci U S A ; 110(8): 2852-7, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382201

RESUMO

Elastic fiber assembly requires deposition of elastin monomers onto microfibrils, the mechanism of which is incompletely understood. Here we show that latent TGF-ß binding protein 4 (LTBP-4) potentiates formation of elastic fibers through interacting with fibulin-5, a tropoelastin-binding protein necessary for elastogenesis. Decreased expression of LTBP-4 in human dermal fibroblast cells by siRNA treatment abolished the linear deposition of fibulin-5 and tropoelastin on microfibrils. It is notable that the addition of recombinant LTBP-4 to cell culture medium promoted elastin deposition on microfibrils without changing the expression of elastic fiber components. This elastogenic property of LTBP-4 is independent of bound TGF-ß because TGF-ß-free recombinant LTBP-4 was as potent an elastogenic inducer as TGF-ß-bound recombinant LTBP-4. Without LTBP-4, fibulin-5 and tropoelastin deposition was discontinuous and punctate in vitro and in vivo. These data suggest a unique function for LTBP-4 during elastic fibrogenesis, making it a potential therapeutic target for elastic fiber regeneration.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação a TGF-beta Latente/fisiologia , Proteínas Recombinantes/metabolismo , Animais , Células HEK293 , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Interferência de RNA
9.
Proc Natl Acad Sci U S A ; 110(2): 767-72, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267064

RESUMO

Inflorescence structures result from the activities of meristems, which coordinate both the renewal of stem cells in the center and organ formation at the periphery. The fate of a meristem is specified at its initiation and changes as the plant develops. During rice inflorescence development, newly formed meristems acquire a branch meristem (BM) identity, and can generate further meristems or terminate as spikelets. Thus, the form of rice inflorescence is determined by a reiterative pattern of decisions made at the meristems. In the dominant gain-of-function mutant tawawa1-D, the activity of the inflorescence meristem (IM) is extended and spikelet specification is delayed, resulting in prolonged branch formation and increased numbers of spikelets. In contrast, reductions in TAWAWA1 (TAW1) activity cause precocious IM abortion and spikelet formation, resulting in the generation of small inflorescences. TAW1 encodes a nuclear protein of unknown function and shows high levels of expression in the shoot apical meristem, the IM, and the BMs. TAW1 expression disappears from incipient spikelet meristems (SMs). We also demonstrate that members of the SHORT VEGETATIVE PHASE subfamily of MADS-box genes function downstream of TAW1. We thus propose that TAW1 is a unique regulator of meristem activity in rice and regulates inflorescence development through the promotion of IM activity and suppression of the phase change to SM identity.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Inflorescência/anatomia & histologia , Meristema/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Elementos de DNA Transponíveis/genética , Fluorescência , Perfilação da Expressão Gênica , Hibridização In Situ , Inflorescência/metabolismo , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Plant J ; 78(2): 294-304, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517863

RESUMO

Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.


Assuntos
Flavonoides/metabolismo , Liases Intramoleculares/fisiologia , Proteínas de Plantas/fisiologia , Antocianinas/química , Antocianinas/metabolismo , Vias Biossintéticas , Flavonoides/química , Flores/anatomia & histologia , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Ipomoea/anatomia & histologia , Ipomoea/genética , Ipomoea/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA
11.
BMC Genomics ; 16: 1014, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26610706

RESUMO

BACKGROUND: Functions of most genes predicted in the soybean genome have not been clarified. A mutant library with a high mutation density would be helpful for functional studies and for identification of novel alleles useful for breeding. Development of cost-effective and high-throughput protocols using next generation sequencing (NGS) technologies is expected to simplify the retrieval of mutants with mutations in genes of interest. RESULTS: To increase the mutation density, seeds of the Japanese elite soybean cultivar Enrei were treated with the chemical mutagen ethyl methanesulfonate (EMS); M2 seeds produced by M1 plants were treated with EMS once again. The resultant library, which consisted of DNA and seeds from 1536 plants, revealed large morphological and physiological variations. Based on whole-genome re-sequencing analysis of 12 mutant lines, the average number of base changes was 12,796 per line. On average, 691 and 35 per line were missense and nonsense mutations, respectively. Two screening strategies for high resolution melting (HRM) analysis and indexed amplicon sequencing were designed to retrieve the mutants; the mutations were confirmed by Sanger sequencing as the final step. In comparison with HRM screening of several genes, indexed amplicon sequencing allows one to scan a longer sequence range and skip screening steps and to know the sequence information of mutation because it uses systematic DNA pooling and the index of NGS reads, which simplifies the discovery of mutants with amino acid substitutions. CONCLUSIONS: A soybean mutant library with a high mutation density was developed. A high mutation density (1 mutation/74 kb) was achieved by repeating the EMS treatment. The mutation density of our library is sufficiently high to obtain a plant in which a gene is nonsense mutated. Thus, our mutant library and the indexed amplicon sequencing will be useful for functional studies of soybean genes and have a potential to yield useful mutant alleles for soybean breeding.


Assuntos
Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese/genética , Mutação/genética
12.
Plant Cell ; 24(5): 2123-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22611180

RESUMO

Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.


Assuntos
Glycine max/enzimologia , Glycine max/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Saponinas/metabolismo , Triterpenos/metabolismo , Glicosiltransferases/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Saponinas/química , Triterpenos/química
13.
Breed Sci ; 65(5): 372-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26719739

RESUMO

Radiocesium is an extremely harmful radionuclide because of its long half-life; it is important to reduce its transfer from contaminated soil into crops. Here we surveyed genetic variation for seed cesium (Cs) concentration in soybean mini-core collections representing large genetic diversity. The collections grown over 3 years in rotational paddy fields exhibited varying seed Cs concentrations with significant year-to-year correlations, although the phenotypic stability of Cs concentration was lower than that of the congeners potassium (K) and rubidium (Rb). Although Cs is supposedly accumulated in plants via the K transport system, there was no apparent relationship between Cs and K concentrations, whereas a clear positive correlation was observed between Cs and Rb concentrations. Cs and K concentrations in seed showed slightly positive and negative correlations, respectively, with days to flowering. We selected several high or low Cs accumulator candidates on the basis of the 3 years of seed concentration data. These two groups showed significantly different seed Cs concentrations in another field. The differences could not be explained by flowering time alone. These results suggest that genetic variation for seed Cs concentration is present in soybean germplasm and would be useful for breeding low Cs-accumulating varieties.

14.
Plant Cell Physiol ; 55(1): 3-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24151203

RESUMO

Active DNA transposons are important tools for gene functional analysis. The endogenous non-autonomous transposon, nDart1-0, in rice (Oryza sativa L.) is expected to generate various transposon-insertion mutants because nDart1-0 elements tend to insert into genic regions under natural growth conditions. We have developed a specific method (nDart1-0-iPCR) for efficient detection of nDart1-0 insertions and successfully identified the SNOW-WHITE LEAF1 (SWL1) gene in a variegated albino (swl1-v) mutant obtained from the nDart1-promoted rice tagging line. The variegated albino phenotype was caused by insertion and excision of nDart1-0 in the 5'-untranslated region of the SWL1 gene predicted to encode an unknown protein with the N-terminal chloroplast transit peptide. SWL1 expression was detected in various rice tissues at different developmental stages. However, immunoblot analysis indicated that SWL1 protein accumulation was strictly regulated in a tissue-specific manner. In the swl1 mutant, formations of grana and stroma thylakoids and prolamellar bodies were inhibited. This study revealed that SWL1 is essential for the beginning of thylakoid membrane organization during chloroplast development. Furthermore, we provide a developmental perspective on the nDart1-promoted tagging line to characterize unidentified gene functions in rice.


Assuntos
Alelos , Genes de Plantas/genética , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética , Tilacoides/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Oryza/ultraestrutura , Fenótipo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Tilacoides/ultraestrutura
15.
Plant Physiol ; 158(3): 1395-405, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22218927

RESUMO

ß-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean ß-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α'- and α-subunits of ß-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the ß-conglycinin complexes containing the disulfide-linked α'/α-subunits were complexes of more than 720 kD. The α'- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α'/α-subunits residing in different ß-conglycinin hexamers, but the binding of P34 to α'- and α-subunits reduces the linkage between ß-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when ß-conglycinin was expressed under nonreducing conditions.


Assuntos
Antígenos de Plantas/metabolismo , Cotilédone/metabolismo , Globulinas/metabolismo , Glycine max/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Soja/metabolismo , Antígenos de Plantas/isolamento & purificação , Western Blotting , Cromatografia em Gel , Dissulfetos/metabolismo , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Globulinas/isolamento & purificação , Complexos Multiproteicos/metabolismo , Concentração Osmolar , Oxirredução , Ligação Proteica , Proteínas de Armazenamento de Sementes/isolamento & purificação , Proteínas de Soja/isolamento & purificação
16.
Plant Cell Rep ; 32(12): 1903-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24022064

RESUMO

KEY MESSAGE: Soybean expressing the Cucumber mosaic virus 2b gene manifests seed coat pigmentation due to suppression of endogenous RNA silencing but no other morphological abnormality. This gene may help prevent transgene silencing. RNA silencing is an important mechanism for gene regulation and antiviral defense in plants. It is also responsible for transgene silencing, however, and thus hinders the establishment of transgenic plants. The 2b protein of Cucumber mosaic virus (CMV) functions as a suppressor of RNA silencing and therefore might prove beneficial for stabilization of transgene expression. We have now generated transgenic soybean that harbors the 2b gene of a CMV-soybean strain under the control of a constitutive promoter to investigate the effects of 2b expression. No growth abnormality was apparent in 2b transgenic plants, although the seed coat was pigmented in several of the transgenic lines. Genes for chalcone synthase (CHS), a key enzyme of the flavonoid pathway, are posttranscriptionally silenced by the inhibitor (I) locus in nonpigmented (yellow) soybean seeds. The levels of CHS mRNA and CHS small interfering RNA in strongly pigmented 2b transgenic seed coats were higher and lower, respectively, than those in the seed coat of a control transgenic line. The expression level of 2b also correlated with the extent of seed coat pigmentation. On the other hand, introduction of the 2b gene together with the DsRed2 gene into somatic embryos prevented the time-dependent decrease in transient DsRed2 expression. Our results indicate that the 2b gene alone is able to suppress RNA silencing of endogenous CHS genes regulated by the I locus, and that 2b is of potential utility for stabilization of transgene expression in soybean without detrimental effects other than seed coat pigmentation.


Assuntos
Cucumovirus/genética , Inativação Gênica , Genes Supressores , Genes Virais/genética , Glycine max/genética , Pigmentação/genética , Sementes/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Proantocianidinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes
17.
Plant Cell Physiol ; 53(5): 857-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514089

RESUMO

A large part of the rice genome is composed of transposons. Since active excision/reintegration of these mobile elements may result in harmful genetic changes, many transposons are maintained in a genetically or epigenetically inactivated state. However, some non-autonomous DNA transposons of the nDart1-3 subgroup, including nDart1-0, actively transpose in specific rice lines, such as pyl-v which carries an active autonomous element, aDart1-27, on chromosome 6. Although nDart1-3 subgroup elements show considerable sequence identity, they display different excision frequencies. The most active element, nDart1-0, had a low cytosine methylation status. The aDart1-27 sequence showed conservation between pyl-stb (pyl-v derivative line) and Nipponbare, which both lack autonomous activity for transposition of nDart1-3 subgroup elements. In pyl-v plants, the promoter region of the aDart1-27 transposase gene was more hypomethylated than in other rice lines. Treatment with the methylation inhibitor 5-azacytidine (5-azaC) induced transposition of nDart1-3 subgroup elements in both pyl-stb and Nipponbare plants; the new insertion sites were frequently located in genic regions. 5-AzaC treatment principally induced expression of Dart1-34 transposase rather than the other 38 aDart1-related elements in both pyl-stb and Nipponbare treatment groups. Our observations show that transposition of nDart1-3 subgroup elements in the nDart1/aDart1 tagging system is correlated with the level of DNA methylation. Our system does not cause somaclonal variation due to an absence of transformed plants, offers the possibility of large-scale screening in the field and can identify dominant mutants. We therefore propose that this tagging system provides a valuable addition to the tools available for rice functional genomics.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Azacitidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Ácidos Hidroxâmicos/farmacologia , Mutação/genética , Oryza/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética , Análise de Sequência de DNA , Transposases/genética , Transposases/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(45): 19029-34, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19855011

RESUMO

Great arteries, as well as lungs and skin, contain elastic fibers as important components to maintain their physiological functions. Although recent studies have revealed that a glycoprotein fibulin-4 (FBLN4) is indispensable for the assembly of mature elastic fibers, it remains to be elucidated how FBLN4 takes part in elastogenesis. Here, we report a dose-dependent requirement for FBLN4 in the development of the elastic fibers in arteries, and a specific role of FBLN4 in recruiting the elastin-cross-linking enzyme, lysyl oxidase (LOX). Reduced expression of Fbln4, which was achieved with a smooth muscle-specific Cre-mediated gene deletion, caused arterial stiffness. Electron-microscopic examination revealed disorganized thick elastic laminae with aberrant deposition of elastin. Aneurysmal dilation of the ascending aorta was found when the Fbln4 expression level was reduced to an even lower level, whereas systemic Fbln4 null mice died perinatally from rupture of the diaphragm. We also found a specific interaction between FBLN4 and the propeptide of LOX, which efficiently promotes assembly of LOX onto tropoelastin. These data suggest a mechanism of elastogenesis, in which a sufficient amount of FBLN4 is essential for tethering LOX to tropoelastin to facilitate cross-linking.


Assuntos
Artérias/metabolismo , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Artérias/ultraestrutura , Proteínas da Matriz Extracelular/genética , Deleção de Genes , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Reação em Cadeia da Polimerase , Ligação Proteica
19.
Breed Sci ; 61(5): 480-94, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136488

RESUMO

Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node-Agrobacterium-mediated transformation and somatic embryo-particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan.

20.
J Dermatol Sci ; 108(1): 2-11, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36210234

RESUMO

BACKGROUND: Although vitamins or their derivatives (Vits), such as panthenyl ethyl ether, tocopherol acetate, and pyridoxine, have been widely used in topical hair care products, their efficacy and mode of action have been insufficiently studied. OBJECTIVE: To elucidate the biological influence of Vits on hair follicles and determine the underlying mechanisms. METHODS: A mouse vibrissa hair follicle organ culture model was utilized to evaluate the effects of Vits on hair shaft elongation. Gene and protein expression analyses and histological investigations were conducted to elucidate the responsible mechanisms. A human hair follicle cell culture was used to assess the clinical relevance. RESULTS: In organ culture models, the combination of panthenyl ethyl ether, tocopherol acetate, and pyridoxine (namely, PPT) supplementation significantly promoted hair shaft elongation. PPT treatment enhanced hair matrix cell proliferation by 1.9-fold compared to controls, as demonstrated by Ki67-positive immunoreactivity. PPT-treated mouse dermal papillae exhibited upregulated Placental growth factor (Plgf) by 1.6-fold compared to controls. Importantly, the addition of PlGF neutralizing antibodies to the ex vivo culture diminished the promotive effect on hair growth and increase in VEGFR-1 phosphorylation achieved by PPT. A VEGFR-1 inhibitor also inhibited the promotion of hair growth. Microarray analysis suggested synergistic summation of individual Vits' bioactivity, putatively explaining the effect of PPT. Moreover, PPT increased PlGF secretion in cultured human dermal papilla cells. CONCLUSION: Our findings suggested that PPT promoted hair shaft elongation by activating PlGF/VEGFR-1 signalling. The current study can shed light on the previously underrepresented advantage of utilizing Vits in hair care products.


Assuntos
Preparações para Cabelo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Feminino , Camundongos , Animais , Fator de Crescimento Placentário/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Vitaminas/farmacologia , Vitaminas/metabolismo , alfa-Tocoferol/farmacologia , Piridoxina/metabolismo , Piridoxina/farmacologia , Cabelo , Folículo Piloso/metabolismo , Células Cultivadas , Vitamina A/farmacologia , Preparações para Cabelo/metabolismo , Preparações para Cabelo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA