Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(4): 2963-2974, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36648695

RESUMO

BACKGROUND: Turmeric (Curcuma longa; TM) is widely used as a spice and possesses anti-inflammatory, antioxidant, and antibacterial properties. The relationship between TM functions and gut microbiota is still unclear. METHODS AND RESULTS: To investigate the effect of TM on gut microbiota and to identify indigenous gut bacteria that are responsive to TM, we fed Institute of Cancer Research mice a diet containing either no fibre (NF, n = 6) or 5% (w/w) TM (n = 6) for 14 days. Moreover, we obtained human stool samples from four healthy volunteers and incubated the samples without (control) or with 2% (w/v) TM at 37 °C for 24 h. Subsequently, microbiota analysis in murine caecal samples and human faecal cultures was performed using 16S rRNA (V4) amplicon sequencing. Higher faecal weights (p < 0.01) and lower plasma triacylglycerol levels (p < 0.05) were measured in the TM-fed mice than in the NF-fed mice. Furthermore, TM feeding increased the abundance of butyrate-producing and other short-chain fatty acid (SCFA)-producing bacteria in mice as well as in human faecal cultures, and Roseburia bacteria were detected as TM-responsive indigenous gut bacteria (TM-RIB) both in mice and in human faecal cultures. Lastly, in the case of human faecal cultures, SCFA contents and antioxidant properties were higher in TM cultures than in control cultures (p < 0.05). CONCLUSION: TM appears to hold the potential to positively affect the host by altering the gut microbiota. Further studies are required to clarify the synergistic effects of TM and TM-RIB.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Microbioma Gastrointestinal/genética , Curcuma , Pós , RNA Ribossômico 16S/genética , Antioxidantes , Ceco/microbiologia , Bactérias/genética , Fezes/microbiologia , Ácidos Graxos Voláteis
2.
J Cell Sci ; 133(23)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148609

RESUMO

Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.


Assuntos
Ciclina B1 , Proteínas Mad2/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/química , Animais , Ciclina B1/genética , Ciclina B1/metabolismo , Meiose/genética , Camundongos , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Biol Reprod ; 100(3): 833-848, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379984

RESUMO

The progression of spermatogenesis is precisely controlled by meiotic stage-specific genes, but the molecular mechanism for activation of such genes is still elusive. Here we found a novel testis-specific long noncoding RNA (lncRNA), Tesra, that was specifically expressed in the mouse testis at the Prss/Tessp gene cluster on chromosome 9. Tesra was transcribed downstream of Prss44/Tessp-4, starting within the gene, as a 4435-nucleotide transcript and developmentally activated at a stage similar to that for Prss/Tessp genes. By in situ hybridization, Tesra was found to be localized in and around germ cells and Leydig cells, being consistent with biochemical data showing its existence in cytoplasmic, nuclear, and extracellular fractions. Based on the finding of more signals in nuclei of pachytene spermatocytes, we explored the possibility that Tesra plays a role in transcriptional activation of Prss/Tessp genes. By a ChIRP assay, the Tesra transcript was found to bind to the Prss42/Tessp-2 promoter region in testicular germ cells, and transient overexpression of Tesra significantly activated endogenous Prss42/Tessp-2 expression and increased Prss42/Tessp-2 promoter activity in a reporter construct. These findings suggest that Tesra activates the Prss42/Tessp-2 gene by binding to the promoter. Finally, we investigated whether Tesra co-functioned with enhancers adjacent to another lncRNA, lncRNA-HSVIII. In the Tet-on system, Tesra transcription significantly increased activity of one enhancer, but Tesra and the enhancer were not interdependent. Collectively, our results proposed a potential function of an lncRNA, Tesra, in transcriptional activation and suggest a novel relationship between an lncRNA and an enhancer.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , RNA Longo não Codificante/metabolismo , Serina Proteases/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Linhagem Celular , Clonagem Molecular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serina Proteases/genética , Testículo/citologia
4.
Biol Proced Online ; 20: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507535

RESUMO

BACKGROUND: Subcellular localization of coding and non-coding RNAs has emerged as major regulatory mechanisms of gene expression in various cell types and many organisms. However, techniques that enable detection of the subcellular distribution of these RNAs with high sensitivity and high resolution remain limited, particularly in vertebrate adult tissues and organs. In this study, we examined the expression and localization of mRNAs encoding Pou5f1/Oct4, Mos, Cyclin B1 and Deleted in Azoospermia-like (Dazl) in zebrafish and mouse ovaries by combining tyramide signal amplification (TSA)-based in situ hybridization with paraffin sections which can preserve cell morphology of tissues and organs at subcellular levels. In addition, the distribution of a long non-coding RNA (lncRNA), lncRNA-HSVIII, in mouse testes was examined by the same method. RESULTS: The mRNAs encoding Mos, Cyclin B1 and Dazl were found to assemble into distinct granules that were distributed in different subcellular regions of zebrafish and mouse oocytes, suggesting conserved and specific regulations of these mRNAs. The lncRNA-HSVIII was first detected in the nucleus of spermatocytes at prophase I of the meiotic cell cycle and was then found in the cytoplasm of round spermatids, revealing expression patterns of lncRNA during germ cell development. Collectively, the in situ hybridization method demonstrated in this study achieved the detection and comparison of precise distribution patterns of coding and non-coding RNAs at subcellular levels in single cells of adult tissues and organs. CONCLUSIONS: This high-sensitivity and high-resolution in situ hybridization is applicable to many vertebrate species and to various tissues and organs and will be useful for studies on the subcellular regulation of gene expression at the level of RNA localization.

5.
Food Chem (Oxf) ; 4: 100071, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415683

RESUMO

Wheat bran (WB) and wheat straw fibre (WSF) are by-products of the wheat flour industry. To prove the existence of indigenous gut bacteria responsible for WB and WSF, the Institute of Cancer Research (ICR) mice were fed a diet containing no fibre (CS), 10% WB, or 5% WSF for 14 d. The caecal microbiome was analysed by 16S rDNA (V4 region) amplicon sequencing. Typical colonies were isolated and estimated by 16S rRNA gene BLASTn analysis. The predominant amplicon sequence variants in all diet groups belonged to Bifidobacterium pseudolongum- and Faecalibaculum rodentium-like bacteria. Lactobacillus johnsonii- and Limosilactobacillus reuteri-like bacteria were high in the WB group compared with those in the CS group. Lactobacillus johnsonii Wheat-1 and L. reuteri Wheat-12 strains could be isolated. Lactobacillus johnsonii Wheat-1 exhibited good fermentation activity in 10% (w/v) WB suspension. Superoxide anion radical scavenging capacity of the WB suspension was significantly increased by the fermentation.

6.
Front Endocrinol (Lausanne) ; 12: 665874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897623

RESUMO

The testis expresses many long noncoding RNAs (lncRNAs), but their functions and overview of lncRNA variety are not well understood. The mouse Prss/Tessp locus contains six serine protease genes and two lncRNAs that have been suggested to play important roles in spermatogenesis. Here, we found a novel testis-specific lncRNA, Start (Steroidogenesis activating lncRNA in testis), in this locus. Start is 1822 nucleotides in length and was found to be localized mostly in the cytosol of germ cells and Leydig cells, although nuclear localization was also observed. Start-knockout (KO) mice generated by the CRISPR/Cas9 system were fertile and showed no morphological abnormality in adults. However, in adult Start-KO testes, RNA-seq and qRT-PCR analyses revealed an increase in the expression of steroidogenic genes such as Star and Hsd3b1, while ELISA analysis revealed that the testosterone levels in serum and testis were significantly low. Interestingly, at 8 days postpartum, both steroidogenic gene expression and testosterone level were decreased in Start-KO mice. Since overexpression of Start in two Leydig-derived cell lines resulted in elevation of the expression of steroidogenic genes including Star and Hsd3b1, Start is likely to be involved in their upregulation. The increase in expression of steroidogenic genes in adult Start-KO testes might be caused by a secondary effect via the androgen receptor autocrine pathway or the hypothalamus-pituitary-gonadal axis. Additionally, we observed a reduced number of Leydig cells at 8 days postpartum. Collectively, our results strongly suggest that Start is a regulator of steroidogenesis in Leydig cells. The current study provides an insight into the overall picture of the function of testis lncRNAs.


Assuntos
Células Intersticiais do Testículo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , RNA Longo não Codificante/genética , Espermatogênese , Esteroide Isomerases/metabolismo , Testículo/metabolismo , Testosterona/biossíntese , Animais , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/genética , Progesterona Redutase/genética , Esteroide Isomerases/genética
7.
Results Probl Cell Differ ; 63: 297-324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28779323

RESUMO

From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.


Assuntos
Camundongos/genética , Oócitos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro Estocado/genética , Peixe-Zebra/genética , Animais , Feminino , Camundongos/embriologia , Oogênese/genética , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA