Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Eur J Immunol ; 46(3): 712-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26648480

RESUMO

Toll-like receptors (TLRs) are playing important roles in stimulating the innate immune response and intensifying adaptive immune response against invading pathogens. Appropriate regulation of TLR activation is important to maintain a balance between preventing tumor activation and inhibiting autoimmunity. Toll-like receptor 9 (TLR9) senses microbial DNA in the endosomes of plasmacytoid dendritic cells and triggers myeloid differentiation primary response gene 88 (MyD88) dependent nuclear factor kappa B (NF-κB) pathways and type I interferon (IFN) responses. However, mechanisms of how TLR9 signals are mediated and which molecules are involved in controlling TLR9 functions remain poorly understood. Here, we report that penta EF-hand protein grancalcin (GCA) interacts and binds with TLR9 in a yeast two-hybrid system and an overexpression system. Using siRNA-mediated knockdown experiments, we also revealed that GCA positively regulates type I IFN production, cytokine/chemokine production through nuclear localization of interferon regulatory factor 7 (IRF7), NF-κB activation, and mitogen-activated protein kinase (MAPK) activation in plasmacytoid dendritic cells. Our results indicate that heterodimerization of GCA and TLR9 is important for TLR9-mediated downstream signaling and might serve to fine tune processes against viral infection.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Proteínas de Ligação ao Cálcio/imunologia , Citocinas/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Técnicas do Sistema de Duplo-Híbrido
2.
Front Oncol ; 14: 1403052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912065

RESUMO

Introduction: Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods: The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results: ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion: This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.

3.
PNAS Nexus ; 1(3): pgac124, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36003074

RESUMO

Human leukocyte antigen class I (HLA-I) molecules bind and present peptides at the cell surface to facilitate the induction of appropriate CD8+ T cell-mediated immune responses to pathogen- and self-derived proteins. The HLA-I peptide-binding cleft contains dominant anchor sites in the B and F pockets that interact primarily with amino acids at peptide position 2 and the C-terminus, respectively. Nonpocket peptide-HLA interactions also contribute to peptide binding and stability, but these secondary interactions are thought to be unique to individual HLA allotypes or to specific peptide antigens. Here, we show that two positively charged residues located near the top of peptide-binding cleft facilitate interactions with negatively charged residues at position 4 of presented peptides, which occur at elevated frequencies across most HLA-I allotypes. Loss of these interactions was shown to impair HLA-I/peptide binding and complex stability, as demonstrated by both in vitro and in silico experiments. Furthermore, mutation of these Arginine-65 (R65) and/or Lysine-66 (K66) residues in HLA-A*02:01 and A*24:02 significantly reduced HLA-I cell surface expression while also reducing the diversity of the presented peptide repertoire by up to 5-fold. The impact of the R65 mutation demonstrates that nonpocket HLA-I/peptide interactions can constitute anchor motifs that exert an unexpectedly broad influence on HLA-I-mediated antigen presentation. These findings provide fundamental insights into peptide antigen binding that could broadly inform epitope discovery in the context of viral vaccine development and cancer immunotherapy.

4.
Cells ; 10(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572028

RESUMO

Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.


Assuntos
Linfócitos T CD8-Positivos/transplante , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Imunoterapia Adotiva/efeitos adversos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Resultado do Tratamento , Microambiente Tumoral
5.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34244308

RESUMO

BACKGROUND: Neoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination. METHODS: We report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone. RESULTS: Out of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3-4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV. CONCLUSIONS: These results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Vacinas Anticâncer/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação
6.
Nat Commun ; 11(1): 5332, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087697

RESUMO

Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues. Here we show that VGLL1-specific CTLs expanded from the blood of a PDAC patient could recognize and kill in an antigen-specific manner a majority of HLA-A*0101 allogeneic tumor cell lines derived not only from PDAC, but also bladder, ovarian, gastric, lung, and basal-like breast cancers. Gene expression profiling reveals VGLL1 as a member of a unique group of cancer-placenta antigens (CPA) that may constitute immunotherapeutic targets for patients with multiple cancer types.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Proteínas de Ligação a DNA/imunologia , Neoplasias Pancreáticas/imunologia , Fatores de Transcrição/imunologia , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Antígeno HLA-A1/imunologia , Humanos , Imunoterapia Adotiva , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Placenta/imunologia , Gravidez , Prognóstico , Linfócitos T Citotóxicos/imunologia , Fatores de Transcrição/genética , Neoplasias Pancreáticas
7.
Cancer Res ; 67(15): 7132-8, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671180

RESUMO

Previously, we have shown that metastasis-associated protein 1 (MTA1) overexpression in transgenic mice was accompanied by high incidence of spontaneous B-cell lymphomas including diffuse large B-cell lymphomas (DLBCL). To understand the molecular basis of lymphoma in MTA1-transgenic (MTA1-TG) mice, we wished to identify a putative MTA1 target with a causal role in B-cell lymphogenesis. Using chromatin immunoprecipitation assays, we identified paired box gene 5 (Pax5), a molecule previously implicated in B-cell lymphogenesis, as a potential downstream effector of MTA1. Lymphomas from MTA1-TG mice also showed up-regulation of Pax5. We also found that MTA1 acetylated on Lys(626) interacted with p300 histone acetyltransferase, and that acetylated MTA1 was recruited to the Pax5 promoter to stimulate Pax5 transcription. Global gene profiling identified down-regulation of a set of genes, including those downstream of Pax5 and directly implicated in the B-cell lymphogenesis. Significance of these murine studies was established by evidence showing a widespread up-regulation of both MTA1 and Pax5 in DLBCL from humans. These observations provide in vivo genetic evidence for a role of MTA1 in lymphomagenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma de Células B/genética , Linfoma Difuso de Grandes Células B/genética , Fator de Transcrição PAX5/genética , Fatores de Transcrição/fisiologia , Animais , Northern Blotting , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Histona Desacetilase 1 , Histona Desacetilases/genética , Humanos , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Ativação Transcricional , Transfecção , Células Tumorais Cultivadas
8.
Cancer Res ; 67(15): 7062-7, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671172

RESUMO

Metastasis-associated protein 1 (MTA1), a component of the nuclear remodeling complex and the founding homologue of the MTA family, has been implicated in metastasis, but definitive causative evidence in an animal model system is currently lacking. Here, we show that MTA1 overexpression in transgenic mice is accompanied by a high incidence of spontaneous B cell lymphomas including diffuse large B cell lymphomas (DLBCL). Lymphocytes and lymphoma cells from MTA1-TG mice are hyperproliferative. Lymphomas were transplantable and of clonal origin and were characterized by down-regulation of p27Kip1 as well as up-regulation of Bcl2 and cyclin D1. The significance of these murine studies was established by evidence showing a widespread up-regulation of MTA1 in DLBCL from humans. These findings reveal a previously unrecognized role for the MTA1 pathway in the development of spontaneous B cell lymphomas, and offer a potential therapeutic target in B cell lymphomas. These observations suggest that MTA1-TG mice represent a new model of spontaneous DLBCL associated with high tumor incidence and could be used for therapeutic intervention studies.


Assuntos
Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma de Células B/genética , Linfoma Difuso de Grandes Células B/genética , Fatores de Transcrição/genética , Animais , Southern Blotting , Proliferação de Células , Feminino , Histona Desacetilases/genética , Humanos , Linfonodos/patologia , Linfoma de Células B/etiologia , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/etiologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Metástase Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Células Tumorais Cultivadas
9.
Cancer Res ; 66(22): 11030-8, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17108142

RESUMO

Integrin-linked kinase (ILK) and estrogen receptor (ER)-alpha modulate cell migration. However, the crosstalk between ERalpha and ILK and the role of ILK in ERalpha-mediated cell migration remain unexplored. Here, we report that ILK participates in ERalpha signaling in breast cancer cells. We found that ILK binds ERalpha in vitro and in vivo through a LXXLL motif in ILK. Estrogen prevented ERalpha-ILK binding, resulting in phosphatidylinositol 3-kinase (PI3K)-dependent increase in ILK kinase activity. Furthermore, the regulation of ERalpha-ILK interaction was dependent on the PI3K pathway. Unexpectedly, transient knockdown or inhibition of ILK caused hyperphosphorylation of ERalpha Ser(118) in an extracellular signal-regulated kinase/mitogen-activated protein kinase pathway-dependent manner and an enhanced ERalpha recruitment to the target chromatin and gene expression, a process reversed by overexpression of ILK. Compatible with these interactions, estrogen regulated cell migration via the PI3K/ILK/AKT pathway with stable ILK overexpression hyperactivating cell migration. Thus, status of ILK signaling may be an important modifier of ER signaling in breast cancer cells and this pathway could be exploited for therapeutic intervention in breast cancer cells.


Assuntos
Movimento Celular/fisiologia , Receptor alfa de Estrogênio/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Receptor alfa de Estrogênio/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk , Transdução de Sinais
10.
Cancer Res ; 66(3): 1694-701, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452229

RESUMO

Here, we investigated the role of P21-activated kinase 1 (Pak1) signaling in the function of estrogen receptor-alpha (ER-alpha) as assessed by serine 305 (S305) activation and transactivation activity of ER. We found that Pak1 overexpression interfered with the antiestrogenic action of tamoxifen upon the ER transactivation function in hormone-sensitive cells. In addition, tamoxifen stimulation led to up-regulation of ER target genes in breast cancer cells with increased Pak1 expression. Tamoxifen also increased Pak1-ER interaction in tamoxifen-resistant but not in tamoxifen-sensitive cells. Results from the mutational studies discovered a role of ER-S305 phosphorylation in triggering a subsequent phosphorylation of serine 118 (S118), and these effects were further potentiated by tamoxifen treatment. We found that S305 activation-linked ER transactivation function requires a functional S118, and active Pak1 signaling is required for a sustaining S118 phosphorylation of the endogenous ER. All of these events were positively influenced by tamoxifen and thus may contribute toward the loss of antiestrogenic effect of tamoxifen. These findings suggest that Pak1 signaling-dependent activation of ER-S305 leads to an enhanced S118 phosphorylation presumably due to a conformational change, and such structural modifications may participate in the development of tamoxifen resistance.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/fisiologia , Células HeLa , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Serina/metabolismo , Transdução de Sinais , Tamoxifeno/antagonistas & inibidores , Tamoxifeno/farmacologia , Ativação Transcricional , Regulação para Cima , Quinases Ativadas por p21
11.
Clin Cancer Res ; 24(14): 3366-3376, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29496759

RESUMO

Purpose: Cancer immunotherapy has shown promising clinical outcomes in many patients. However, some patients still fail to respond, and new strategies are needed to overcome resistance. The purpose of this study was to identify novel genes and understand the mechanisms that confer resistance to cancer immunotherapy.Experimental Design: To identify genes mediating resistance to T-cell killing, we performed an open reading frame (ORF) screen of a kinome library to study whether overexpression of a gene in patient-derived melanoma cells could inhibit their susceptibility to killing by autologous tumor-infiltrating lymphocytes (TIL).Results: The RNA-binding protein MEX3B was identified as a top candidate that decreased the susceptibility of melanoma cells to killing by TILs. Further analyses of anti-PD-1-treated melanoma patient tumor samples suggested that higher MEX3B expression is associated with resistance to PD-1 blockade. In addition, significantly decreased levels of IFNγ were secreted from TILs incubated with MEX3B-overexpressing tumor cells. Interestingly, this phenotype was rescued upon overexpression of exogenous HLA-A2. Consistent with this, we observed decreased HLA-A expression in MEX3B-overexpressing tumor cells. Finally, luciferase reporter assays and RNA-binding protein immunoprecipitation assays suggest that this is due to MEX3B binding to the 3' untranslated region (UTR) of HLA-A to destabilize the mRNA.Conclusions: MEX3B mediates resistance to cancer immunotherapy by binding to the 3' UTR of HLA-A to destabilize the HLA-A mRNA and thus downregulate HLA-A expression on the surface of tumor cells, thereby making the tumor cells unable to be recognized and killed by T cells. Clin Cancer Res; 24(14); 3366-76. ©2018 AACRSee related commentary by Kalbasi and Ribas, p. 3239.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos HLA-A/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Biomarcadores Tumorais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/genética , Genes Reporter , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Humanos , Interferon gama/biossíntese , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo
12.
Mol Cell Biol ; 24(15): 6581-91, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15254226

RESUMO

The transcriptional activity of estrogen receptor alpha (ER-alpha) is modified by regulatory action and interactions of coactivators and corepressors. Recent studies have shown that the metastasis-associated protein 1 (MTA1) represses estrogen receptor element (ERE)-driven transcription in breast cancer cells. With a yeast two-hybrid screen to clone MTA1-interacting proteins, we identified a known nuclear receptor coregulator (NRIF3) as an MTA1-binding protein. NRIF3 interacted with MTA1 both in vitro and in vivo. NRIF3 bound to the C-terminal region of MTA1, while MTA1 bound to the N-terminal region of NRIF3, containing one nuclear receptor interaction LXXLL motif. We showed that NRIF3 is an ER coactivator, hyperstimulated ER transactivation functions, and associated with the endogenous ER and its target gene promoter. MTA1 repressed NRIF3-mediated stimulation of ERE-driven transcription and interfered with NRIF3's association with the ER target gene chromatin. In addition, NRIF3 deregulation enhanced the responsiveness of breast cancer cells to estrogen-induced stimulation of growth and anchorage independence. Furthermore, we found that NRIF3 is an estrogen-inducible gene and activated ER associated with the ER response element in the NRIF3 gene promoter. These findings suggest that NRIF3, an MTA1-interacting protein, is an estrogen-inducible gene and that regulatory interactions between MTA1 and NRIF3 might be important in modulating the sensitivity of breast cancer cells to estrogen.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Northern Blotting , Western Blotting , Divisão Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA Complementar/metabolismo , Receptor alfa de Estrogênio , Estrogênios/farmacologia , Deleção de Genes , Glutationa Transferase/metabolismo , Humanos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Transativadores , Transcrição Gênica , Ativação Transcricional , Transfecção , Técnicas do Sistema de Duplo-Híbrido
13.
Cancer Res ; 65(22): 10594-601, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16288053

RESUMO

LIM domain only 4 (LMO4), a member of the LIM-only family of transcriptional coregulatory proteins, consists of two LIM protein-protein interaction domains that enable it to function as a linker protein in multiprotein complexes. Here, we have identified estrogen receptor alpha (ERalpha) and its corepressor, metastasis tumor antigen 1 (MTA1), as two novel binding partners of LMO4. Interestingly, LMO4 exhibited binding with both ERalpha and MTA1 and existed as a complex with ERalpha, MTA1, and histone deacetylases (HDAC), implying that LMO4 was a component of the MTA1 corepressor complex. Consistent with this notion, LMO4 overexpression repressed ERalpha transactivation functions in an HDAC-dependent manner. Accordingly, silencing of endogenous LMO4 expression resulted in a significant increased recruitment of ERalpha to target gene chromatin, stimulation of ERalpha transactivation activity, and enhanced expression of ERalpha-regulated genes. These findings suggested that LMO4 was an integral part of the molecular machinery involved in the negative regulation of ERalpha transactivation function in breast cells. Because LMO4 is up-regulated in human breast cancers, repression of ERalpha transactivation functions by LMO4 might contribute to the process of breast cancer progression by allowing the development of ERalpha-negative phenotypes, leading to increased aggressiveness of breast cancer cells.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Domínio LIM , Proteínas Repressoras/metabolismo , Transativadores , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
14.
Cancer Immunol Res ; 5(8): 618-629, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28630054

RESUMO

Cytotoxic T lymphocyte (CTL)-based immunotherapies have had remarkable success at generating objective clinical responses in patients with advanced metastatic melanoma. Although the melanocyte differentiation antigens (MDA) MART-1, PMEL, and tyrosinase were among the first melanoma tumor-associated antigens identified and targeted with immunotherapy, expression within normal melanocytes of the eye and inner ear can elicit serious autoimmune side effects, thus limiting their clinical potential as CTL targets. Using a tandem mass spectrometry (MS) approach to analyze the immunopeptidomes of 55 melanoma patient-derived cell lines, we identified a number of shared HLA class I-bound peptides derived from the melanocyte-specific transporter protein SLC45A2. Antigen-specific CTLs generated against HLA-A*0201- and HLA-A*2402-restricted SLC45A2 peptides effectively killed a majority of HLA-matched cutaneous, uveal, and mucosal melanoma cell lines tested (18/25). CTLs specific for SLC45A2 showed significantly reduced recognition of HLA-matched primary melanocytes that were, conversely, robustly killed by MART1- and PMEL-specific T cells. Transcriptome analysis revealed that SLC45A2 mRNA expression in normal melanocytes was less than 2% that of other MDAs, therefore providing a more favorable melanoma-to-melanocyte expression ratio. Expression of SLC45A2 and CTL sensitivity could be further upregulated in BRAF(V600E)-mutant melanoma cells upon treatment with BRAF or MEK inhibitors, similarly to other MDAs. Taken together, our study demonstrates the feasibility of using tandem MS as a means of discovering shared immunogenic tumor-associated epitopes and identifies SLC45A2 as a promising immunotherapeutic target for melanoma with high tumor selectivity and reduced potential for autoimmune toxicity. Cancer Immunol Res; 5(8); 618-29. ©2017 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia , Melanoma/terapia , Proteínas de Membrana Transportadoras/imunologia , Proteínas Proto-Oncogênicas B-raf/genética , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Citotoxicidade Imunológica , Epitopos/imunologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A24/imunologia , Humanos , Antígeno MART-1/imunologia , Melanócitos/imunologia , Melanoma/imunologia , Melanoma/patologia , Proteínas de Membrana Transportadoras/genética , Peptídeos/genética , Peptídeos/imunologia , Proteínas Proto-Oncogênicas B-raf/imunologia , Espectrometria de Massas em Tandem , Transcriptoma/genética , Antígeno gp100 de Melanoma/imunologia
15.
Nat Commun ; 8(1): 451, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878208

RESUMO

T-cell-based immunotherapies are promising treatments for cancer patients. Although durable responses can be achieved in some patients, many patients fail to respond to these therapies, underscoring the need for improvement with combination therapies. From a screen of 850 bioactive compounds, we identify HSP90 inhibitors as candidates for combination with immunotherapy. We show that inhibition of HSP90 with ganetespib enhances T-cell-mediated killing of patient-derived human melanoma cells by their autologous T cells in vitro and potentiates responses to anti-CTLA4 and anti-PD1 therapy in vivo. Mechanistic studies reveal that HSP90 inhibition results in upregulation of interferon response genes, which are essential for the enhanced killing of ganetespib treated melanoma cells by T cells. Taken together, these findings provide evidence that HSP90 inhibition can potentiate T-cell-mediated anti-tumor immune responses, and rationale to explore the combination of immunotherapy and HSP90 inhibitors.Many patients fail to respond to T cell based immunotherapies. Here, the authors, through a high-throughput screening, identify HSP90 inhibitors as a class of preferred drugs for treatment combination with immunotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ipilimumab/farmacologia , Melanoma/terapia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunoterapia , Interferons/farmacologia , Estimativa de Kaplan-Meier , Melanoma/genética , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Regulação para Cima
16.
Clin Cancer Res ; 11(8): 2868-74, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837734

RESUMO

PURPOSE: We sought to gain insight into the mechanisms of heregulin-beta1 (HRG) action on breast epithelial cells by identifying and characterizing HRG-regulated proteins. EXPERIMENTAL DESIGN: Differential display mRNA screening of human breast cancer cells grown in the presence or absence of HRG was used to identify HRG-regulated genes. Biochemical and functional studies were undertaken to examine the impact of HRG and the therapeutic antibody herceptin on protein expression, localization, and function. RESULTS: We identified the ATPase subunit 4 (S4) of the 26S proteasome as a HRG-regulated target. Both S4 mRNA and protein levels were increased by HRG; however, this HRG-stimulated increase was blocked by the therapeutic antibody herceptin. S4 expression was significantly increased in primary human breast tumors and in estrogen receptor-negative tumors. Coimmunoprecipitation, immunofluorescence, and ATPase activity assays suggested that HRG also induced S4 activity and formation of a functional proteasome complex. CONCLUSIONS: This is the first demonstration of growth factor-regulated expression, localization, and activity of the S4 subunit of the 26S proteasome in human breast cancer cells. These findings now provide a potential mechanistic rationale for the use of proteasome inhibitors in breast cancers with active HRG signaling.


Assuntos
Adenosina Trifosfatases/genética , Substâncias de Crescimento/genética , Neuregulina-1/farmacologia , Adenosina Trifosfatases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Substâncias de Crescimento/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica/genética , Transfecção
17.
Oncogene ; 21(27): 4289-300, 2002 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12082616

RESUMO

Heregulin-beta1 (HRG), a combinatorial ligand for human epidermal growth factor receptor 3 (HER3) and HER4, is a regulatory polypeptide having distinct biological effects, such as growth stimulation, differentiation, invasiveness, and migration in mammary epithelial cells. The mechanism underlying the diverse functions of HRG is not well established but is believed to depend on induced changes in the expression of specific cellular gene products, their modification, or both. Here, we identified the basic leucine zipper transcription factor, the growth-arrest and DNA-damage 153 (GADD153)/CCAAT-enhancer binding protein (C/EBP) homologous protein (CHOP) as one of the HRG-inducible genes. We demonstrated that HRG stimulation of mammary epithelial cells induces the expression of GADD153 mRNA and protein and transcription of GADD153 promoter. The transcriptional activity of the GADD153 promoter as well as transcription from the C/EBP-activating transcription factor (ATF) composite motif in the GADD153 promoter was also stimulated by HRG-inducible ATF-4 and activated HER2 but not wild-type HER2. GADD153 expression was upregulated by the lactogenic hormones insulin and progesterone and associated with differentiation of normal mammary epithelial cells. Consistent with its role as transcriptional modifier, GADD153 stimulated transcription of beta-casein promoter activity in a STAT5a-sensitive manner in mammary epithelial cells. Analysis of mouse mammary gland development revealed that GADD153 expression was predominantly restricted in the early lactating stages. Because cyclic AMP responsive element and ATF binding sites are present in a variety of growth-regulating cellular genes, these findings suggest that stimulation of GADD153 expression and its transactivating functions may constitute an important mechanism of regulation of putative genes having diverse functions during cell growth and differentiation.


Assuntos
Mama/citologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/citologia , Proteínas do Leite , Neuregulina-1/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Fator 4 Ativador da Transcrição , Adenocarcinoma/patologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/genética , Caseínas/biossíntese , Caseínas/genética , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes erbB-2 , Humanos , Hibridização In Situ , Insulina/farmacologia , Lactação/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Progesterona/farmacologia , Regiões Promotoras Genéticas , Receptor ErbB-2/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5 , Transativadores/fisiologia , Fator de Transcrição CHOP , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Trastuzumab , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo , Proteínas Supressoras de Tumor
18.
Oncogene ; 23(25): 4422-9, 2004 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15077195

RESUMO

Recent studies have shown that metastasis-associated protein-1 short form (MTA1s) - metastatic tumor antigen 1 short form sequesters estrogen receptor-alpha (ER-alpha) in the cytoplasm of breast cancer cells. Using a yeast two-hybrid screening to clone MTA1s-interacting proteins, we identified casein kinase I-gamma 2 (CKI-gamma2, a ubiquitously expressed cytoplasmic kinase) as an MTA1s-binding protein. We show that MTA1s interacts with CKI-gamma2 both in vitro and in vivo and colocalizes in the cytoplasm. In addition, we found that CKI-gamma2 can phosphorylate MTA1s, but not ER, in an antiestrogen-dependent manner and that estrogen stimulates CKI-gamma2 activity that could be effectively blocked by a specific inhibitor of CKI. CKI-gamma2 could further potentiate the ER corepressive function of MTA1s. Kinase dead CK1-gamma2 could not repress estrogen-induced ER transactivation functions. Results from mutagenesis studies suggest that substitution of the serine residue at 321 to alanine, which is a possible CKI-gamma2 phopshorylation site in MTA1s, results in a significant reduction in the ability of MTA1s to repress ER transactivation. These findings identified MTA1s as a target of CKI-gamma2, and provided new evidence to suggest that CKI-gamma2 phosphorylates and modulates the functions of MTA1s, and that these extranuclear effects of estrogen might have important implications in regulating the functions of MTA1s in human mammary epithelial and cancer cells.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Quinases/fisiologia , Proteínas Repressoras/metabolismo , Animais , Mama/citologia , Mama/metabolismo , Neoplasias da Mama/patologia , Caseína Quinases , Linhagem Celular Tumoral , Citoplasma/metabolismo , Inibidores Enzimáticos/farmacologia , Estradiol/farmacologia , Receptor alfa de Estrogênio , Feminino , Glutationa Transferase/genética , Histona Desacetilases/química , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores de Estrogênio/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Transativadores , Ativação Transcricional/efeitos dos fármacos , Transfecção , Técnicas do Sistema de Duplo-Híbrido
19.
Clin Cancer Res ; 8(10): 3285-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12374700

RESUMO

Overexpression of the human epidermal growth factor receptor (HER) 2 has been linked to the development and maintenance of malignant phenotypes in breast tumors. In addition, the growth and dissemination of human cancers are regulated in part by the autocrine motility factor (AMF)/phosphoglucose isomerase shown to be up-regulated by heregulin (HRG) in breast cancer cells. This study was undertaken to explore the effect of anti-HER2 monoclonal antibody 4D5 [Herceptin (HCT)] on AMF expression and the potential of its augmentation by specific simple sugar AMF inhibitors. Here we show that HCT treatment of high HER2-expressing breast cancer SK-BR3, BT-474, and ZR-75R cells resulted in down-regulation of AMF mRNA and protein. HCT inhibited the ability of HRG to induce AMF expression in cells with a normal HER2 level, and HCT-mediated down-regulation could be reversed by HRG treatment in breast cancer cells with a high HER2 level. HCT also inhibited transcription from a chimeric pGL3-Luc vector-based reporter system containing the 1.8-kb promoter region of human AMF. Treatment of breast cancer cells with the combination of HCT and specific AMF inhibitors, erythrose 4-phosphate or D-mannose 6-phosphate, resulted in an additive inhibitory effect on both the growth rate and invasiveness of cells as compared with treatment with each agent alone. Results presented here suggest that HCT can effectively block both ligand-induced and constitutive expression of AMF associated with high HER2 overexpression, implying a role of the AMF pathway in the action of HCT. Accordingly, the combination of AMF inhibitor with HCT can potentiate the growth-inhibitory and anti-invasive action of HCT in breast cancer cells.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Manosefosfatos/uso terapêutico , Fosfatos Açúcares/uso terapêutico , Anticorpos Monoclonais Humanizados , Northern Blotting , Neoplasias da Mama/metabolismo , Divisão Celular , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Fibronectinas/farmacologia , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Manosefosfatos/farmacologia , Neuregulina-1/farmacologia , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Trastuzumab , Células Tumorais Cultivadas
20.
Cell Res ; 22(7): 1129-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453241

RESUMO

Toll-like receptor 9 (TLR9) senses microbial DNA in the endosomes of plasmacytoid dendritic cells (pDCs) and triggers MyD88-dependent type I interferon (IFN) responses. To better understand TLR9 biology in pDCs, we established a yeast two-hybrid library for the identification of TLR9-interacting proteins. Here, we report that an IFN-inducible protein, phospholipid scramblase 1 (PLSCR1), interacts with TLR9 in pDCs. Knockdown of PLSCR1 expression by siRNA in human pDC cell line led to a 60-70% reduction of IFN-α responses following CpG-ODN (oligodeoxynucleotide) stimulation. Primary pDCs from PLSCR1-deficient mice produced lower amount of type 1 IFN than pDCs from the wild-type mice in response to CpG-ODN, herpes simplex virus and influenza A virus. Following CpG-A stimulation, there were much lower amounts of TLR9 in the early endosomes together with CpG-A in pDCs from PLSCR1-deficient mice. Our study demonstrates that PLSCR1 is a TLR9-interacting protein that plays an important role in pDC's type 1 IFN responses by regulating TLR9 trafficking to the endosomal compartment.


Assuntos
Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Imunofluorescência , Humanos , Immunoblotting , Fator Regulador 7 de Interferon/metabolismo , Interferon-alfa/metabolismo , Camundongos , Oligodesoxirribonucleotídeos/farmacologia , Proteínas de Transferência de Fosfolipídeos/genética , Receptor Toll-Like 9/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA