RESUMO
Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.
Assuntos
Anti-Infecciosos , Sequenciamento por Nanoporos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , MetagenômicaRESUMO
Core genome single-nucleotide polymorphism phylogeny was used to characterise a nosocomial outbreak caused by ST-80 Vancomycin-resistant Enterococcus faecium (VREf). It identified 22 of 25 epidemiologically related isolates as belonging to an outbreak cluster. The use of Fourier-transform infrared (FT-IR) spectroscopy with a cluster-defining cut-off of 0.071 resulted in the correct classification of 21 of 22 phylogenetically related isolates in a single cluster. It successfully distinguished three phylogenetically unrelated isolates from the outbreak cluster, along with five ST-80 unrelated control isolates, and five isolates from a previous outbreak in May 2023, yielding only one mischaracterised environmental isolate. These findings support the potential use of FT-IR spectroscopy as a rapid screening tool to assist outbreak investigations. Notably, this study is the first to focus on the performance of FT-IR spectroscopy in the epidemiological analysis of VREf isolates with the same sequence type.
RESUMO
OBJECTIVE: This study aimed to characterize the changing landscape of circulating SARS-CoV-2 lineages in the local community of Hong Kong throughout 2022. We examined how adjustments to quarantine arrangements influenced the transmission pattern of Omicron variants in a city with relatively rigorous social distancing measures at that time. METHODS: In 2022, a total of 4684 local SARS-CoV-2 genomes were sequenced using the Oxford Nanopore GridION sequencer. SARS-CoV-2 consensus genomes were generated by MAFFT, and the maximum likelihood phylogeny of these genomes was determined using IQ-TREE. The dynamic changes in lineages were depicted in a time tree created by Nextstrain. Statistical analysis was conducted to assess the correlation between changes in the number of lineages and adjustments to quarantine arrangements. RESULTS: By the end of 2022, a total of 83 SARS-CoV-2 lineages were identified in the community. The increase in the number of new lineages was significantly associated with the relaxation of quarantine arrangements (One-way ANOVA, F(5, 47) = 18.233, p < 0.001)). Over time, Omicron BA.5 sub-lineages replaced BA.2.2 and became the predominant Omicron variants in Hong Kong. The influx of new lineages reshaped the dynamics of Omicron variants in the community without fluctuating the death rate and hospitalization rate (One-way ANOVA, F(5, 47) = 2.037, p = 0.091). CONCLUSION: This study revealed that even with an extended mandatory quarantine period for incoming travelers, it may not be feasible to completely prevent the introduction and subsequent community spread of highly contagious Omicron variants. Ongoing molecular surveillance of COVID-19 remains essential to monitor the emergence of new recombinant variants.
Assuntos
COVID-19 , Genoma Viral , Filogenia , Quarentena , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , COVID-19/prevenção & controle , Hong Kong/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Distanciamento Físico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Criança , Idoso , Adulto JovemRESUMO
Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.
Assuntos
Enterobacteriaceae , Lignina , Anaerobiose , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterobacteriaceae/genética , Lignina/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , SimbioseRESUMO
The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.
RESUMO
The present study describes the role of endothelium in the vascular response to purified acteoside from Ligustrum purpurascens in rat mesenteric arteries. In endothelium-intact rings, acteoside (3-50 micromol/L) enhanced phenylephrine-induced contraction without affecting the maximum response. This enhancement was absent in endothelium-denuded rings. Pretreatment with nitric oxide synthase (NOS) inhibitors, N(G)-nitro-L-arginine (L-NNA, 100 micromol/L) and N(G)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/L), or a selective guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,2-alpha]quinoxalin-1-one (ODQ, 10 micromol/L), increased both the sensitivity of vasoconstriction to phenylephrine and the maximal response. The enhancing effect of acteoside (30 micromol/L) was abolished in the presence of L-NAME, L-NNA, or ODQ. Tetraethylammonium (TEA(+), 3 mmol/L), a putative K(+) channel blocker, also abolished the effect of acteoside. CaCl2 (0.01-10 mmol/L) induced contractions in 50 mmol/L K(+)-containing Krebs solution. Neither acteoside nor TEA(+) affected CaCl2-induced contraction in elevated K(+) solution. Acteoside (30 micromol/L) attenuated acetylcholine-induced endothelium-dependent relaxation. Acteoside did not influence relaxation induced by exogenous NO donors, hydroxylamine or sodium nitroprusside, in endothelium-denuded rings. Acteoside did not alter endothelium-independent relaxation induced by forskolin or NS 1619. The present results indicate that acteoside enhanced the evoked vasoconstriction, mainly through inhibition of endothelial NO production/release and inhibition of NO-mediated TEA(+)-sensitive activation of K(+) channels.