Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Immunity ; 55(10): 1764-1778, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049482

RESUMO

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunidade Humoral , Pandemias , Linfócitos T , Vacinação
2.
Nature ; 601(7891): 110-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758478

RESUMO

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Assuntos
Infecções Assintomáticas , COVID-19/imunologia , COVID-19/virologia , RNA Polimerases Dirigidas por DNA/imunologia , Células T de Memória/imunologia , SARS-CoV-2/imunologia , Soroconversão , Proliferação de Células , Estudos de Coortes , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Feminino , Pessoal de Saúde , Humanos , Masculino , Proteínas de Membrana/imunologia , Células T de Memória/citologia , Complexos Multienzimáticos/imunologia , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transcrição Gênica/imunologia
3.
Nature ; 584(7821): 457-462, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32668444

RESUMO

Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Linfócitos T/imunologia , Betacoronavirus/química , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Reações Cruzadas/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/virologia , SARS-CoV-2
4.
Nat Mater ; 23(2): 205-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052937

RESUMO

Whirling topological textures play a key role in exotic phases of magnetic materials and are promising for logic and memory applications. In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to their ferromagnetic counterparts, but they are also difficult to study due to their vanishing net magnetic moment. One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry. Here we show that an archetypal antiferromagnet-haematite-hosts a rich tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge distributions. The direct read-out of the previously inaccessible vorticity of an antiferromagnetic spin texture provides the crucial connection to its magnetic charge through a duality relation. Our work defines a paradigmatic class of magnetic systems to explore two-dimensional monopolar physics, and highlights the transformative role that diamond quantum magnetometry could play in exploring emergent phenomena in quantum materials.

5.
J Gen Virol ; 105(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757942

RESUMO

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Assuntos
Vírus da Hepatite B , Hepatite B , Vírus Delta da Hepatite , Replicação Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/imunologia , Humanos , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/fisiologia , Hepatite B/virologia , Hepatite B/imunologia , Biologia Molecular , Japão , Hepatite D/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética
6.
Hepatology ; 74(1): 200-213, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33249625

RESUMO

BACKGROUND AND AIMS: HBV-specific T-cell receptor (HBV-TCR) engineered T cells have the potential for treating HCC relapses after liver transplantation, but their efficacy can be hampered by the concomitant immunosuppressive treatment required to prevent graft rejection. Our aim is to molecularly engineer TCR-T cells that could retain their polyfunctionality in such patients while minimizing the associated risk of organ rejection. APPROACH AND RESULTS: We first analyzed how immunosuppressive drugs can interfere with the in vivo function of TCR-T cells in liver transplanted patients with HBV-HCC recurrence receiving HBV-TCR T cells and in vitro in the presence of clinically relevant concentrations of immunosuppressive tacrolimus (TAC) and mycophenolate mofetil (MMF). Immunosuppressive Drug Resistant Armored TCR-T cells of desired specificity (HBV or Epstein-Barr virus) were then engineered by concomitantly electroporating mRNA encoding specific TCRs and mutated variants of calcineurin B (CnB) and inosine-5'-monophosphate dehydrogenase (IMPDH), and their function was assessed through intracellular cytokine staining and cytotoxicity assays in the presence of TAC and MMF. Liver transplanted HBV-HCC patients receiving different immunosuppressant drugs exhibited varying levels of activated (CD39+ Ki67+ ) peripheral blood mononuclear cells after HBV-TCR T-cell infusions that positively correlate with clinical efficacy. In vitro experiments with TAC and MMF showed a potent inhibition of TCR-T cell polyfunctionality. This inhibition can be effectively negated by the transient overexpression of mutated variants of CnB and IMPDH. Importantly, the resistance only lasted for 3-5 days, after which sensitivity was restored. CONCLUSIONS: We engineered TCR-T cells of desired specificities that transiently escape the immunosuppressive effects of TAC and MMF. This finding has important clinical applications for the treatment of HBV-HCC relapses and other pathologies occurring in organ transplanted patients.


Assuntos
Carcinoma Hepatocelular/cirurgia , Rejeição de Enxerto/prevenção & controle , Neoplasias Hepáticas/cirurgia , Recidiva Local de Neoplasia/terapia , Linfócitos T/transplante , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Técnicas de Cocultura , Resistência a Medicamentos/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Células Hep G2 , Hepatite B/patologia , Hepatite B/cirurgia , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Transplante de Fígado/efeitos adversos , Ácido Micofenólico/farmacologia , Ácido Micofenólico/uso terapêutico , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
7.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142588

RESUMO

The emergence of new SARS-CoV-2 lineages able to escape antibodies elicited by infection or vaccination based on the Spike protein of the Wuhan isolates has reduced the ability of Spike-specific antibodies to protect previously infected or vaccinated individuals from infection. Therefore, the role played by T cells in the containment of viral replication and spread after infection has taken a more central stage. In this brief review, we will discuss the role played by T cells in the protection from COVID-19, with a particular emphasis on the kinetics of the T cell response and its localization at the site of primary infection.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Cinética , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Vacinação
8.
Gastroenterology ; 159(2): 652-664, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302614

RESUMO

BACKGROUND & AIMS: Chronic hepatitis B virus (HBV) infection is characterized by the presence of defective viral envelope proteins (hepatitis B surface antigen [HBsAg]) and the duration of infection-most patients acquire the infection at birth or during the first years of life. We investigated the effects of these factors on patients' lymphocyte and HBV-specific T-cell populations. METHODS: We collected blood samples and clinical data from 243 patients with HBV infection (3-75 years old) in the United Kingdom and China. We measured levels of HBV DNA, HBsAg, hepatitis B e antigen, and alanine aminotransferase; analyzed HBV genotypes; and isolated peripheral blood mononuclear cells (PBMCs). In PBMCs from 48 patients with varying levels of serum HBsAg, we measured 40 markers on nature killer and T cells by mass cytometry. PBMCs from 189 patients with chronic infection and 38 patients with resolved infections were incubated with HBV peptide libraries, and HBV-specific T cells were identified by interferon gamma enzyme-linked immune absorbent spot (ELISpot) assays or flow cytometry. We used multivariate linear regression and performed variable selection using the Akaike information criterion to identify covariates associated with HBV-specific responses of T cells. RESULTS: Although T- and natural killer cell phenotypes and functions did not change with level of serum HBsAg, numbers of HBs-specific T cells correlated with serum levels of HBsAg (r = 0.3367; P < .00001). After we performed the variable selection, the multivariate linear regression model identified patient age as the only factor significantly associated with numbers of HBs-specific T cells (P = .000115). In patients younger than 30 years, HBs-specific T cells constituted 28.26% of the total HBV-specific T cells; this value decreased to 7.14% in patients older than 30 years. CONCLUSIONS: In an analysis of immune cells from patients with chronic HBV infection, we found that the duration of HBsAg exposure, rather than the quantity of HBsAg, was associated with the level of anti-HBV immune response. Although the presence of HBs-specific T cells might not be required for the clearance of HBV infection in all patients, strategies to restore anti-HBV immune responses should be considered in patients younger than 30 years.


Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Fatores Etários , Antivirais/uso terapêutico , Células Cultivadas , Criança , Pré-Escolar , DNA Viral/isolamento & purificação , Feminino , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/sangue , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Humanos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Fatores de Tempo , Adulto Jovem
9.
J Hepatol ; 72(1): 34-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348999

RESUMO

BACKGROUND & AIMS: Knowledge about the regulation of anti-HBV humoral immunity during natural HBV infection is limited. We recently utilized dual fluorochrome-conjugated HBsAg to demonstrate, in patients with chronic HBV (CHB) infection, the functional impairment of their HBsAg-specific B cells. However, the features of their HBcAg-specific B cells are unknown. Here we developed a method to directly visualize, select and characterize HBcAg-specific B cells in parallel with HBsAg-specific B cells. METHODS: Fluorochrome-conjugated HBcAg reagents were synthesized and utilized to directly detect ex vivo HBcAg-specific B cells in 36 patients with CHB. The frequency, phenotype, functional maturation and transcriptomic profile of HBcAg-specific B cells was studied by flow cytometry, in vitro maturation assays and NanoString-based detection of expression of immune genes, which we compared with HBsAg-specific B cells and total B cells. RESULTS: HBcAg-specific B cells are present at a higher frequency than HBsAg-specific B cells in patients with CHB and, unlike HBsAg-specific B cells, they mature efficiently into antibody-secreting cells in vitro. Their phenotypic and transcriptomic profiles show that HBcAg-specific B cells are preferentially IgG+ memory B cells. However, despite their phenotypic and functional differences, HBcAg- and HBsAg-specific B cells from patients with CHB share an mRNA expression pattern that differs from global memory B cells and is characterized by high expression of genes indicative of cross-presentation and innate immune activity. CONCLUSIONS: During chronic HBV infection, a direct relation exists between serological detection of anti-HBs and anti-HBc antibodies, and the quantity and function of their respective specific B cells. However, the transcriptomic analysis performed in HBsAg- and HBcAg-specific B cells suggests additional roles of HBV-specific B cells beyond the production of antibodies. LAY SUMMARY: Protection of viral infection necessitates the production of antibodies that are generated by specialized cells of the immune system called B cells. During chronic HBV infection, antibodies against the internal part of the virus (core or HBcAg) are detectable while the antibodies directed against the virus envelope (surface or HBsAg) are not present. Here we developed a method that allows us to directly visualize ex vivo the B cells specific for these 2 viral components, highlighting their differences and similarities, and showing how 2 components of the same virus can have different impacts on the function of antiviral B cells.


Assuntos
Linfócitos B/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Criança , Estudos de Coortes , DNA Viral/sangue , DNA Viral/imunologia , Feminino , Anticorpos Anti-Hepatite B/sangue , Hepatite B Crônica/sangue , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Transcriptoma , Adulto Jovem
10.
Gastroenterology ; 156(6): 1862-1876.e9, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30711630

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is often associated with hepatitis B virus (HBV) infection. Cells of most HBV-related HCCs contain HBV-DNA fragments that do not encode entire HBV antigens. We investigated whether these integrated HBV-DNA fragments encode epitopes that are recognized by T cells and whether their presence in HCCs can be used to select HBV-specific T-cell receptors (TCRs) for immunotherapy. METHODS: HCC cells negative for HBV antigens, based on immunohistochemistry, were analyzed for the presence of HBV messenger RNAs (mRNAs) by real-time polymerase chain reaction, sequencing, and Nanostring approaches. We tested the ability of HBV mRNA-positive HCC cells to generate epitopes that are recognized by T cells using HBV-specific T cells and TCR-like antibodies. We then analyzed HBV gene expression profiles of primary HCCs and metastases from 2 patients with HCC recurrence after liver transplantation. Using the HBV-transcript profiles, we selected, from a library of TCRs previously characterized from patients with self-limited HBV infection, the TCR specific for the HBV epitope encoded by the detected HBV mRNA. Autologous T cells were engineered to express the selected TCRs, through electroporation of mRNA into cells, and these TCR T cells were adoptively transferred to the patients in increasing numbers (1 × 104-10 × 106 TCR+ T cells/kg) weekly for 112 days or 1 year. We monitored patients' liver function, serum levels of cytokines, and standard blood parameters. Antitumor efficacy was assessed based on serum levels of alpha fetoprotein and computed tomography of metastases. RESULTS: HCC cells that did not express whole HBV antigens contained short HBV mRNAs, which encode epitopes that are recognized by and activate HBV-specific T cells. Autologous T cells engineered to express TCRs specific for epitopes expressed from HBV-DNA in patients' metastases were given to 2 patients without notable adverse events. The cells did not affect liver function over a 1-year period. In 1 patient, 5 of 6 pulmonary metastases decreased in volume during the 1-year period of T-cell administration. CONCLUSIONS: HCC cells contain short segments of integrated HBV-DNA that encodes epitopes that are recognized by and activate T cells. HBV transcriptomes of these cells could be used to engineer T cells for personalized immunotherapy. This approach might be used to treat a wider population of patients with HBV-associated HCC.


Assuntos
Carcinoma Hepatocelular/terapia , DNA Viral , Vírus da Hepatite B/genética , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/genética , Linfócitos T/imunologia , Transcriptoma/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Eletroporação , Epitopos de Linfócito T/biossíntese , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Antígenos da Hepatite B/genética , Antígenos da Hepatite B/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Transplante de Fígado , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Biossíntese de Proteínas , RNA Viral/genética , Receptores de Antígenos de Linfócitos T , Integração Viral , alfa-Fetoproteínas/metabolismo
11.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518652

RESUMO

Distinct populations of hepatocytes infected with hepatitis B virus (HBV) or only harboring HBV DNA integrations coexist within an HBV chronically infected liver. These hepatocytes express HBV antigens at different levels and with different intracellular localizations, but it is not known whether this heterogeneity of viral antigen expression could result in an uneven hepatic presentation of distinct HBV epitopes/HLA class I complexes triggering different levels of activation of HBV-specific CD8+ T cells. Using antibodies specific to two distinct HLA-A*02:01/HBV epitope complexes of HBV nucleocapsid and envelope proteins, we mapped their topological distributions in liver biopsy specimens of two anti-hepatitis B e antigen-positive (HBe+) chronic HBV (CHB) patients. We demonstrated that the core and envelope CD8+ T cell epitopes were not uniformly distributed in the liver parenchyma but preferentially located in distinct and sometimes mutually exclusive hepatic zones. The efficiency of HBV epitope presentation was then tested in vitro utilizing HLA-A*02:01/HBV epitope-specific antibodies and the corresponding CD8+ T cells in primary human hepatocyte and hepatoma cell lines either infected with HBV or harboring HBV DNA integration. We confirmed the existence of a marked variability in the efficiency of HLA class I/HBV epitope presentation among the different targets that was influenced by the presence of gamma interferon (IFN-γ) and availability of newly translated viral antigens. In conclusion, HBV antigen presentation can be heterogeneous within an HBV-infected liver. As a consequence, CD8+ T cells of different HBV specificities might have different antiviral efficacies.IMPORTANCE The inability of patients with chronic HBV infection to clear HBV is associated with defective HBV-specific CD8+ T cells. Hence, the majority of immunotherapy developments focus on HBV-specific T cell function restoration. However, knowledge of whether distinct HBV-specific T cells can equally target all the HBV-infected hepatocytes of a chronically infected liver is lacking. In this work, analysis of CHB patient liver parenchyma and in vitro HBV infection models shows a nonuniform distribution of HBV CD8+ T cell epitopes that is influenced by the presence of IFN-γ and availability of newly translated viral antigens. These results suggest that CD8+ T cells recognizing different HBV epitopes can be necessary for efficient immune therapeutic control of chronic HBV infection.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Células Hep G2 , Hepatite B/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Interferon gama/metabolismo , Fígado/imunologia , Análise Espaço-Temporal
12.
Gastroenterology ; 155(1): 180-193.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29550589

RESUMO

BACKGROUND & AIMS: Strategies to develop virus-specific T cells against hepatic viral infections have been hindered by safety concerns. We engineered nonlytic human T cells to suppress replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) without overt hepatotoxicity and investigated their antiviral activity. METHODS: We electroporated resting T cells or T cells activated by anti-CD3 with mRNAs encoding HBV or HCV-specific T-cell receptors (TCRs) to create 2 populations of TCR-reprogrammed T cells. We tested their ability to suppress HBV or HCV replication without lysis in 2-dimensional and 3-dimensional cultures of HepG2.2.15 cells and HBV-infected HepG2-hNTCP cells. We also injected TCR-reprogrammed resting and activated T cells into HBV-infected urokinase-type plasminogen activator/severe combined immunodeficiency disease/interleukin 2γ mice with humanized livers and measured levels of intrahepatic and serological viral parameters and serum alanine aminotransferase. Livers were collected for analysis of gene expression patterns to determine effects of the TCR-reprogrammed T cells. RESULTS: TCR-reprogrammed resting T cells produced comparable levels of interferon gamma but lower levels of perforin and granzyme than activated T cells and did not lyse HCV- or HBV-infected hepatoma cells. Although T-cell secretion of interferon gamma was required to inhibit HCV replication, the HBV-specific TCR-reprogrammed resting T cells reduced HBV replication also through intracellular activation of apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3). The mechanism of APOBEC3 intracellular activation involved temporal expression of lymphotoxin-ß receptor ligands on resting T cells after TCR-mediated antigen recognition and activation of lymphotoxin-ß receptor in infected cells. CONCLUSIONS: We developed TCR-reprogrammed nonlytic T cells capable of activating APOBEC3 in hepatoma cells and in HBV-infected human hepatocytes in mice, limiting viral infection. These cells with limited hepatotoxicity might be developed for treatment of chronic HBV infection.


Assuntos
Citosina Desaminase/imunologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/terapia , Fígado/metabolismo , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Desaminases APOBEC , Animais , Citidina Desaminase , Eletroporação , Células Hep G2 , Hepatócitos , Humanos , Interferon gama/imunologia , Camundongos , Camundongos SCID , RNA Mensageiro , RNA Viral , Receptores de Antígenos de Linfócitos T/genética
14.
Nat Mater ; 16(9): 898-904, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714983

RESUMO

Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100-nm room-temperature (RT) skyrmions in several multilayer films has triggered vigorous efforts to modulate their physical properties for their use in devices. Here we present a tunable RT skyrmion platform based on multilayer stacks of Ir/Fe/Co/Pt, which we study using X-ray microscopy, magnetic force microscopy and Hall transport techniques. By varying the ferromagnetic layer composition, we can tailor the magnetic interactions governing skyrmion properties, thereby tuning their thermodynamic stability parameter by an order of magnitude. The skyrmions exhibit a smooth crossover between isolated (metastable) and disordered lattice configurations across samples, while their size and density can be tuned by factors of two and ten, respectively. We thus establish a platform for investigating functional sub-50-nm RT skyrmions, pointing towards the development of skyrmion-based memory devices.

15.
J Hepatol ; 67(3): 490-500, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28483682

RESUMO

BACKGROUND & AIMS: Liver inflammation is key in the progression of chronic viral hepatitis to cirrhosis and hepatocellular carcinoma. The magnitude of viral replication and the specific anti-viral immune responses should govern the degree of inflammation, but a direct correlation is not consistently found in chronic viral hepatitis patients. We aim to better define the mechanisms that contribute to chronic liver inflammation. METHODS: Intrahepatic CD14+ myeloid cells from healthy donors (n=19) and patients with viral-related liver cirrhosis (HBV, HBV/HDV or HCV; n=15) were subjected to detailed phenotypic, molecular and functional characterisation. RESULTS: Unsupervised analysis of multi-parametric data showed that liver disease was associated with the intrahepatic expansion of activated myeloid cells mainly composed of pro-inflammatory CD14+HLA-DRhiCD206+ cells, which spontaneously produced TNFα and GM-CSF. These cells only showed heightened pro-inflammatory responses to bacterial TLR agonists and were more refractory to endotoxin-induced tolerance. A liver-specific enrichment of CD14+HLA-DRhiCD206+ cells was also detected in a humanised mouse model of liver inflammation. This accumulation was abrogated following oral antibiotic treatment, suggesting a direct involvement of translocated gut-derived microbial products in liver injury. CONCLUSIONS: Viral-related chronic liver inflammation is driven by the interplay between non-endotoxin-tolerant pro-inflammatory CD14+HLA-DRhiCD206+ myeloid cells and translocated bacterial products. Deciphering this mechanism paves the way for the development of therapeutic strategies specifically targeting CD206+ myeloid cells in viral-related liver disease patients. Lay summary: Viral-related chronic liver disease is driven by intrahepatic pro-inflammatory myeloid cells accumulating in a gut-derived bacterial product-dependent manner. Our findings support the use of oral antibiotics to ameliorate liver inflammation in these patients.


Assuntos
Hepatite Viral Humana/etiologia , Lectinas Tipo C/fisiologia , Macrófagos/imunologia , Lectinas de Ligação a Manose/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal , Antígenos HLA-DR/análise , Hepatite Viral Humana/tratamento farmacológico , Humanos , Receptores de Lipopolissacarídeos/análise , Receptor de Manose , Camundongos , Células Mieloides/fisiologia , Fator de Necrose Tumoral alfa/biossíntese
16.
Cytotherapy ; 19(11): 1317-1324, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847469

RESUMO

Although therapy for chronic hepatitis C virus infection has delivered remarkable cure rates, curative therapies for hepatitis B virus (HBV) may only be available in the distant future. The possibility to eliminate or at least stably maintain low levels of HBV replication under the control of a functional anti-host response has stimulated the development of specific immunotherapies for HBV infection. We reviewed the development of T-cell therapy for HBV, highlighting its potential antiviral efficiency but also its potential toxicities in different groups of chronic HBV patients. Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are the only two communicable diseases in which there have been increases in related morbidity and mortality over the past 20 years [1]. Both viruses are chronically infecting about 500 million people (HBV ~350 million, HCV ~150 million) and represent the seventh most frequent cause of death worldwide [1]. HBV and HCV are hepatotropic, non-cytopathic viruses able to establish persistent infections that cause different degrees of hepatic inflammation (chronic hepatitis), leading to the development of liver cirrhosis and hepatocellular carcinoma (HCC). The two viruses are unrelated and virologically different. HCV remains prevalent in North America and Europe, whereas chronic hepatitis B is prevalent in Asia and sub-Saharan Africa [1,2]. HCV is an RNA virus belonging to the Flaviviridae family, and HBV is a DNA virus of the Hepadnaviridae family and uses reverse transcriptase to synthesize its DNA from a pre-genomic RNA form [3]. HCV is able to activate in the infected host a classical type I interferon (IFN)-mediated innate response [3], whereas HBV generally escapes innate immune recognition and does not activate type I IFN-mediated immunity. Chronic HBV and HCV infections are both characterized by quantitative and functional defects of virus-specific T-cell response [4,5]. The frequency of virus-specific T cells is extremely low, and virus-specific T cells show features of exhaustion in both chronic HBV and HCV patients [6]. However, the quantitative and functional defects are more pronounced in HBV infections, with T cells virtually undetectable in the blood of many chronic HBV patients by ex vivo analysis [7-9]. In addition, while frequency and impact of viral mutations in T cell epitopes are frequently detectable in HCV infections [10], viral mutations affecting CD8 T-cell epitopes are scarcer in chronic HBV patients [6,11,12]. Of extreme practical importance in relation to the potential impact of T-cell therapy for HBV and HCV are the efficacies of currently available treatments. New therapies for HCV have delivered remarkable cure rates, with more than 90% of patients achieving viral clearance with all oral direct-acting antivirals [13]. In contrast, curative therapies for HBV will not be available until the distant future (14). Thus, although it is difficult to see a possible therapeutic advantage of a new T-cell-based therapy in chronic HCV patients, the fact that current therapies for HBV only partially suppress but do not eliminate HBV from the infected host has encouraged research for new and more radical therapies designed to eliminate or at least stably maintain low levels of HBV replication under the control of a functional anti-host response. For these reasons, in this review, we concentrate on the development of T-cell therapy for HBV. T-cell therapy for HCV chronic infection is certainly important for understanding the mechanisms of T-cell antiviral control [15,16], but their use for therapy appears unlikely.


Assuntos
Transplante de Células/efeitos adversos , Transplante de Células/métodos , Hepatite B Crônica/terapia , Linfócitos T/transplante , Epitopos de Linfócito T/genética , Hepatite C Crônica/terapia , Humanos , Linfócitos T/imunologia
17.
J Chem Phys ; 146(20): 203323, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571378

RESUMO

Many studies have established a major effect of nanoscale confinement on the glass transition temperature (Tg) of polystyrene (PS), most commonly in thin films with one or two free surfaces. Here, we characterize smaller yet significant intrinsic size effects (in the absence of free surfaces or significant attractive polymer-substrate interactions) on the Tg and fragility of PS. Melt infiltration of various molecular weights (MWs) of PS into anodic aluminum oxide (AAO) templates is used to create nanorods supported on AAO with rod diameter (d) ranging from 24 to 210 nm. The Tg (both as Tg,onset and fictive temperature) and fragility values are characterized by differential scanning calorimetry. No intrinsic size effect is observed for 30 kg/mol PS in template-supported nanorods with d = 24 nm. However, effects on Tg are present for PS nanorods with Mn and Mw ≥ ∼175 kg/mol, with effects increasing in magnitude with increasing MW. For example, in 24-nm-diameter template-supported nanorods, Tg, rod - Tg, bulk = -2.0 to -2.5 °C for PS with Mn = 175 kg/mol and Mw = 182 kg/mol, and Tg, rod - Tg, bulk = ∼-8 °C for PS with Mn = 929 kg/mol and Mw = 1420 kg/mol. In general, reductions in Tg occur when d ≤ ∼2Rg, where Rg is the bulk polymer radius of gyration. Thus, intrinsic size effects are significant when the rod diameter is smaller than the diameter (2Rg) associated with the spherical volume pervaded by coils in bulk. We hypothesize that the Tg reduction occurs when chain segment packing frustration is sufficiently perturbed by confinement in the nanorods. This explanation is supported by observed reductions in fragility with the increasing extent of confinement. We also explain why these small intrinsic size effects do not contradict reports that the Tg-confinement effect in supported PS films with one free surface exhibits little or no MW dependence.

18.
PLoS Pathog ; 10(6): e1004210, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967632

RESUMO

The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161(Bright) mucosal-associated invariant T (MAIT) and CD56(Bright) NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oligorribonucleotídeos/farmacologia , Receptor 8 Toll-Like/agonistas , Regulação para Cima/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Enterococcus faecalis/imunologia , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Escherichia coli/imunologia , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite C/imunologia , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Humanos , Testes de Liberação de Interferon-gama , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Riboflavina/biossíntese , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor 8 Toll-Like/metabolismo
19.
J Virol ; 88(2): 1332-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227846

RESUMO

HLA-C-restricted T cells have been shown to play an important role in HIV control, but their impact on protection or pathogenesis in other viral infections remains elusive. Here, we characterized the hierarchy of HLA class I-restricted hepatitis B virus (HBV) epitopes targeted by CD8 T cells in HBV-infected subjects. The frequency of CD8 T cells specific for a panel of 18 HBV epitopes (restricted by HLA-A∗0201/03/07 [hereinafter HLA-A0201/03/07], -A1101, -A2402/07, -B5801, -B4001, -B1301, and -Cw0801) was quantified in a total of 59 subjects who resolved HBV infection. We found that the HLA-Cw0801-restricted epitope comprised of Env residues 171 to 180 (Env171-180) is immunoprevalent in the Southeast Asian subjects (10/17 HLA-Cw0801-positive subjects) and immunodominant in the majority of HLA-Cw0801-positive subjects able to control HBV infection. HLA-Cw0801-restricted Env171-180-specific CD8 T cells recognized endogenously produced HBV surface antigen (HBsAg) and tolerated amino acid variations within the epitope detected in HBV genotypes B and C. In conclusion, we demonstrate that the HLA-Cw0801-restricted Env171-180 T cell response is an important component of the HBV-specific adaptive T cell immunity in Asians infected with HBV. Thus, HLA-C restricted T cells might play an important role in various viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Envelope Viral/imunologia , Antígenos HLA-A/imunologia , Antígenos HLA-C/imunologia , Hepatite B/etnologia , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Humanos , Imunidade Celular , Epitopos Imunodominantes/genética , Estrutura Terciária de Proteína , Singapura , Tailândia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
20.
J Immunol ; 190(7): 3142-52, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23447689

RESUMO

Human mucosal-associated invariant T (MAIT) cells are a T cell population characterized by the expression of a semi-invariant TCR capable of recognizing bacterial products in the context of MR1. MAIT cells are enriched in the human liver, which is constantly exposed to bacterial products from the intestine. Whether this specific parenchymal localization influences their function remains unknown. We analyzed MAIT cells resident in the vascular bed of livers and showed that they represented the majority of T cells expressing NK markers and the dominant IL-17A(+) T cell subset in the human liver sinusoids. In comparison with MAIT cells purified from peripheral blood, intrasinusoidal MAIT cells expressed markers of T cell activation; however, TCR-mediated cytokine production was equally suppressed in both circulating and intrasinusoidal MAIT cells. MAIT cells also expressed high levels of IL-7R, and we showed that IL-7, a cytokine produced by hepatocytes during inflammation, regulated TCR-mediated activation of MAIT cells, licensing them to dramatically increase Th1 cytokines and IL-17A production. Our quantitative and functional data indicate that MAIT cells are a specialized cell population highly adapted to exert their immune functions in the vascular network of the liver.


Assuntos
Interleucina-7/fisiologia , Fígado/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Interferon gama/biossíntese , Interleucina-7/metabolismo , Interleucina-7/farmacologia , Pessoa de Meia-Idade , Mitógenos/imunologia , Mucosa/imunologia , Mucosa/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA