Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(26): 14548-14561, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343126

RESUMO

Catalytic NH3 synthesis and decomposition offer a new promising way to store and transport renewable energy in the form of NH3 from remote or offshore sites to industrial plants. To use NH3 as a hydrogen carrier, it is important to understand the catalytic functionality of NH3 decomposition reactions at an atomic level. Here, we report for the first time that Ru species confined in a 13X zeolite cavity display the highest specific catalytic activity of over 4000 h-1 for the NH3 decomposition with a lower activation barrier, compared to most reported catalytic materials in the literature. Mechanistic and modeling studies clearly indicate that the N-H bond of NH3 is ruptured heterolytically by the frustrated Lewis pair of Ruδ+-Oδ- in the zeolite identified by synchrotron X-rays and neutron powder diffraction with Rietveld refinement as well as other characterization techniques including solid-state nuclear magnetic resonance spectroscopy, in situ diffuse reflectance infrared transform spectroscopy, and temperature-programmed analysis. This contrasts with the homolytic cleavage of N-H displayed by metal nanoparticles. Our work reveals the unprecedented unique behavior of cooperative frustrated Lewis pairs created by the metal species on the internal zeolite surface, resulting in a dynamic hydrogen shuttling from NH3 to regenerate framework Brønsted acid sites that eventually are converted to molecular hydrogen.

2.
Faraday Discuss ; 243(0): 520-548, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37186100

RESUMO

The viability of using ammonia as a hydrogen storage vector is contingent on the development of catalytic systems active for ammonia decomposition at low temperatures. Zeolite-supported metal catalysts, unlike systems based on supports like MgO or carbon nanotubes (CNTs), are crystalline and lend themselves to analytic techniques like synchrotron X-ray powder diffraction (SXRD) and Rietveld refinement, allowing precise characterisation of catalytic active sites, and therefore mechanistic elucidation. This study focuses on characterising and optimising novel zeolite-supported Ru catalysts for ammonia decomposition, with a focus on the effects of N-substitution on catalyst structure and activity. Characterisation focuses on an unsubstituted and N-substituted Ru-zeolite Y pair with NMR, FTIR, TEM, XRD, XAS, ICP, and BET, demonstrating the successful incorporation of N into the zeolite framework and an enhancement in metal dispersion upon N-substitution. A series of 18 monometallic and bimetallic catalysts is then synthesised on X and USY supports and screened for catalytic activity. Ru is identified as the most active metal for ammonia decomposition. Observed trends suggest catalyst dispersion can be increased with substantially lower metal loadings, and in particular via the formation of stably anchored oligonuclear metal clusters within the zeolite framework, as opposed to much larger nanoparticles (NPs) on its exterior, following N-substitution of the framework. DFT modelling proposes a prismatic Ru6N6 cluster fitted to XAS data. High-activity catalyst Ru-ß (N) 2.4% demonstrates comparable or better ammonia conversion by Ru wt% than recently reported catalysts in the literature at 450 °C and 30 000 WHSV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA