Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Pharm Res ; 40(2): 431-447, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36151444

RESUMO

BACKGROUND: The development of generic ophthalmic drug products is challenging due to the complexity of the ocular system, and a lack of sensitive testing to evaluate the interplay of physiology with ophthalmic formulations. While measurements of drug concentration at the site of action in humans are typically sparse, these measurements are more easily obtained in rabbits. The purpose of this study is to demonstrate the utility of an ocular physiologically based pharmacokinetic (PBPK) model for translation of ocular exposure from rabbit to human. METHOD: The Ocular Compartmental Absorption and Transit (OCAT™) model within GastroPlus® v9.8.2 was used to build PBPK models for levofloxacin (Lev), moxifloxacin (Mox), and gatifloxacin (Gat) ophthalmic solutions. in the rabbit eye. The models were subsequently used to predict Lev, Mox, and Gat exposure after ocular solution administrations in humans. Drug-specific parameters were used as fitted and validated in the rabbit OCAT model. The physiological parameters were scaled to match human ocular physiology. RESULTS: OCAT model simulations for rabbit well described the observed concentrations in the eye compartments following Lev, Mox, and Gat solution administrations of different doses and various administration schedules. The clinical ocular exposure following ocular administration of Lev, Mox, and Gat solutions at different doses and various administration schedules was well predicted. CONCLUSION: Even though additional case studies for different types of active pharmaceutical ingredients (APIs) and formulations will be needed, the current study represents an important step in the validation of the extrapolation method to predict human ocular exposure for ophthalmic drug products using PBPK models.


Assuntos
Olho , Levofloxacino , Animais , Humanos , Coelhos , Soluções Oftálmicas , Modelos Biológicos
2.
Pharm Res ; 40(4): 961-975, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36959411

RESUMO

INTRODUCTION: Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD). OBJECTIVE: The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products. METHODS: Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension. RESULTS: Using literature transport and response parameters, the computational model described well the concentration-time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points. CONCLUSION: This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.


Assuntos
Olho , Timolol , Animais , Humanos , Coelhos , Timolol/farmacocinética , Soluções Oftálmicas/farmacocinética , Córnea , Administração Tópica
3.
Pharm Res ; 37(12): 245, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215336

RESUMO

PURPOSE: The purpose of this study is to show how the Ocular Compartmental Absorption & Transit (OCAT™) model in GastroPlus® can be used to characterize ocular drug pharmacokinetic performance in rabbits for ointment formulations. METHODS: A newly OCAT™ model developed for fluorometholone, as well as a previously verified model for dexamethasone, were used to characterize the aqueous humor (AH) concentration following the administration of multiple ointment formulations to rabbit. The model uses the following parameters: application surface area (SA), a fitted application time, and the fitted Higuchi release constant to characterize the rate of passage of the active pharmaceutical ingredient from the ointment formulations into the tears in vivo. RESULTS: Parameter sensitivity analysis was performed to understand the impact of ointment formulation changes on ocular exposure. While application time was found to have a significant impact on the time of maximal concentration in AH, both the application SA and the Higuchi release constant significantly influenced both the maximum concentration and the ocular exposure. CONCLUSIONS: This initial model for ointment ophthalmic formulations is a first step to better understand the interplay between physiological factors and ophthalmic formulation physicochemical properties and their impact on in vivo ocular drug pharmacokinetic performance in rabbits.


Assuntos
Dexametasona/farmacocinética , Olho/metabolismo , Fluormetolona/farmacocinética , Glucocorticoides/farmacocinética , Modelos Biológicos , Absorção Ocular , Administração Oftálmica , Animais , Humor Aquoso/metabolismo , Simulação por Computador , Dexametasona/administração & dosagem , Fluormetolona/administração & dosagem , Glucocorticoides/administração & dosagem , Pomadas , Coelhos
4.
J Chem Phys ; 145(3): 034501, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448890

RESUMO

Accurate and efficient empirical potential energy models that describe the atomistic interactions between water molecules in the liquid phase are essential for computer simulations of many problems in physics, chemistry, and biology, especially when long length or time scales are important. However, while models with non-polarizable partial charges at four or five sites in a water molecule give remarkably good values for certain properties, deficiencies have been noted in other properties and increasing the number of sites decreases computational efficiency. An alternate approach is to utilize a multipole expansion of the electrostatic potential due to the molecular charge distribution, which is exact outside the charge distribution in the limits of infinite distances or infinite orders of multipoles while partial charges are a qualitative representation of electron density as point charges. Here, a single-site multipole model of water is presented, which is as fast computationally as three-site models but is also more accurate than four- and five-site models. The dipole, quadrupole, and octupole moments are from quantum mechanical-molecular mechanical calculations so that they account for the average polarization in the liquid phase, and represent both the in-plane and out-of-plane electrostatic potentials of a water molecule in the liquid phase. This model gives accurate thermodynamic, dynamic, and dielectric properties at 298 K and 1 atm, as well as good temperature and pressure dependence of these properties.

5.
J Chem Phys ; 142(6): 064501, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681917

RESUMO

The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

6.
J Chem Phys ; 141(24): 244504, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554164

RESUMO

The most essential features of a water molecule that give rise to its unique properties are examined using computer simulations of different water models. The charge distribution of a water molecule characterized by molecular multipoles is quantitatively linked to the liquid properties of water via order parameters for the degree (S(2)) and symmetry (ΔS(2)) of the tetrahedral arrangement of the nearest neighbors, or "hydration shell." ΔS(2) also appears to determine the long-range tetrahedral network and interfacial structure. From the correlations, some models are shown to be unable to reproduce certain properties due to the limitations of the model itself rather than the parameterization, which indicates that they are lacking essential molecular features. Moreover, since these properties depend not only on S(2) but also on ΔS(2), the long-range structure in these models may be incorrect. Based on the molecular features found in the models that are best able to reproduce liquid properties, the most essential features of a water molecule in liquid water appear to be a charge distribution with a large dipole, a large quadrupole, and negative charge out of the molecular plane, as well as a symmetrically ordered tetrahedral hydration shell that results from this charge distribution. The implications for modeling water are also discussed.

7.
Pharmaceutics ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065612

RESUMO

The development of generic ophthalmic drug products with complex formulations is challenging due to the complexity of the ocular system and a lack of sensitive testing to evaluate the interplay of its physiology with ophthalmic drugs. New methods are needed to facilitate the development of ophthalmic generic drug products. Ocular physiologically based pharmacokinetic (O-PBPK) models can provide insight into drug partitioning in eye tissues that are usually not accessible and/or are challenging to sample in humans. This study aims to demonstrate the utility of an ocular PBPK model to predict human exposure following the administration of ophthalmic suspension. Besifloxacin (Bes) suspension is presented as a case study. The O-PBPK model for Bes ophthalmic suspension (Besivance® 0.6%) accounts for nasolacrimal drainage, suspended particle dissolution in the tears, ocular absorption, and distribution in the rabbit eye. A topical controlled release formulation was used to integrate the effect of Durasite® on Bes ocular retention. The model was subsequently used to predict Bes exposure after its topical administration in humans. Drug-specific parameters were used as validated for rabbits. The physiological parameters were adjusted to match human ocular physiology. Simulated human ocular pharmacokinetic profiles were compared with the observed ocular tissue concentration data to assess the OCAT models' ability to predict human ocular exposure. The O-PBPK model simulations adequately described the observed concentrations in the eye tissues following the topical administration of Bes suspension in rabbits. After adjustment of physiological parameters to represent the human eye, the extrapolation of clinical ocular exposure following a single ocular administration of Bes suspension was successful.

8.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 247-256, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38130031

RESUMO

Proton pump inhibitors (PPIs) can affect the release of drugs from their dosage forms in vivo by elevating the gastric pH. Our recent clinical study has demonstrated that drug-drug interactions (DDIs) exist between a PPI, omeprazole, and nifedipine extended-release formulations, where systemic exposure of nifedipine was increased in subjects after multiple-dose pretreatment of omeprazole. However, the mechanism of the observed DDIs between omeprazole and nifedipine has not been well-understood, as the DDI may also be mediated through CYP3A4 enzyme inhibition in addition to the elevated gastric pH caused by omeprazole. This study used physiologically-based pharmacokinetic (PBPK) modeling and simulations to investigate the underlying mechanism of these complex DDIs. A formulation exhibiting differences in in vitro dissolution across physiological pH range and another formulation where pH does not impact dissolution appreciably (e.g., an osmotic pump) were chosen to characterize the potential impact of pH. The PBPK models incorporated two-stage in vitro release profiles via US Pharmacopeia 2 apparatus. PBPK simulations suggest that the elevated gastric pH following multiple-dose administration of omeprazole has a minimal effect on nifedipine pharmacokinetics (PKs), whereas CYP3A4-mediated DDI is likely the main driver to the observed change of nifedipine PKs in the presence of omeprazole. Compared to the osmotic formulation, the slightly increased exposure of nifedipine can be accounted for by the enhanced drug release in the pH-dependent formulation. The reported model-based approach may be useful in DDI risk assessments, product formulation designs, and bioequivalence evaluations.


Assuntos
Nifedipino , Omeprazol , Humanos , Nifedipino/química , Nifedipino/farmacocinética , Omeprazol/farmacologia , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Liberação Controlada de Fármacos , Administração Oral
9.
J Am Chem Soc ; 135(13): 4918-21, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23506339

RESUMO

Hydrophobic hydration is critical in biology as well as many industrial processes. Here, computer simulations of ethanol/water mixtures show that a three-stage mechanism of dehydration of ethanol explains the anomalous concentration dependence of the thermodynamic partial molar volumes, as well as recent data from neutron diffraction and Raman scattering. Moreover, the simulations show that the breakdown of hydrophobic hydration shells, whose structure is determined by the unique molecular properties of water, is caused by the microcomplexity of the environment and may be representative of early events in protein folding and structure stabilization in aqueous solutions.


Assuntos
Etanol/química , Termodinâmica , Água/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dobramento de Proteína
10.
Clin Pharmacol Ther ; 114(5): 1134-1141, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37669218

RESUMO

Oral extended-release (ER) dosage forms have been used to sustain blood drug levels, reduce adverse events, and improve patient compliance. We investigated potential effects of comedication on pharmacokinetic exposure of nifedipine ER products with different formulation designs and manufacturing processes. A clinical study compared a generic version of nifedipine ER tablet with pH-dependent dissolution behavior with an osmotic pump product with pH independent drug release under fasting condition. In this study, two nifedipine tablet products were tested with or without short-term omeprazole comedication in healthy subjects. Seven-day administration of omeprazole before nifedipine dosing significantly increased the gastric pH, and subsequently increased the geometric least square (LS) means of area under the concentration-time curve from time zero to the last measurable timepoint (AUC0-t ) and maximum plasma concentration (Cmax ) of nifedipine to 132.6% (90% confidence interval (CI): 120.6-145.7%) and 112.8% (90% CI: 100.8-126.3%) for pH-dependent ER tablets, and 120.6% (90% CI: 109.7-132.5%) and 122.5% (90% CI: 113.7-131.9%) for the pH-independent ER tablets, respectively. Similar extent of increase in AUC0-t and Cmax was confirmed in the subpopulations whose gastric pH was ≥ 4 or ≤ 3 in subjects with or without omeprazole administration. Given that similar increases in drug exposures were observed for both pH-dependent and pH-independent nifedipine formulations and the geometric LS mean ratios were between 112% and 133% with and without short-term omeprazole comedication, the gastric pH may have limited effects on omeprazole-induced nifedipine PK changes on the tested formulations. The inhibition of cytochrome P450 3A4 activity may play a significant role causing nifedipine exposure changes for both formulations, which would warrant additional assessment.


Assuntos
Nifedipino , Omeprazol , Humanos , Omeprazol/farmacocinética , Nifedipino/efeitos adversos , Nifedipino/farmacocinética , Voluntários Saudáveis , Disponibilidade Biológica , Comprimidos , Área Sob a Curva , Estudos Cross-Over , Administração Oral
11.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 631-638, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36851886

RESUMO

For approval, a proposed generic drug product must demonstrate it is bioequivalent (BE) to the reference listed drug product. For locally acting drug products, conventional BE approaches may not be feasible because measurements in local tissues at the sites of action are often impractical, unethical, or cost-prohibitive. Mechanistic modeling approaches, such as physiologically-based pharmacokinetic (PBPK) modeling, may integrate information from drug product properties and human physiology to predict drug concentrations in these local tissues. This may allow clinical relevance determination of critical drug product attributes for BE assessment during the development of generic drug products. In this regard, the Office of Generic Drugs of the US Food and Drug Administration has recently established scientific research programs to accelerate the development and assessment of generic products by utilizing model-integrated alternative BE approaches. This report summarizes the presentations and panel discussion from a public workshop that provided research updates and information on the current state of the use of PBPK modeling approaches to support generic product development for ophthalmic, injectable, nasal, and implant drug products.


Assuntos
Medicamentos Genéricos , Relatório de Pesquisa , Humanos , Medicamentos Genéricos/farmacocinética , Preparações Farmacêuticas , Equivalência Terapêutica
12.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 619-623, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36631942

RESUMO

On September 30 and October 1, 2021, the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics cosponsored a live virtual workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." The overall aims of the workshop included (i) engaging the generic drug industry and other involved stakeholders regarding how mechanistic modeling and simulation can support their product development and regulatory submissions; (ii) sharing the current state of mechanistic modeling for bioequivalence (BE) assessment through case studies; (iii) establishing a consensus on best practices for using mechanistic modeling approaches, such as physiologically based pharmacokinetic modeling and computational fluid dynamics modeling, for BE assessment; and (iv) introducing the concept of a Model Master File to improve model sharing between model developers, industry, and the FDA. More than 1500 people registered for the workshop. Based on a postworkshop survey, the majority of participants reported that their fundamental scientific understanding of mechanistic models was enhanced, there was greater consensus on model validation and verification, and regulatory expectations for mechanistic modeling submitted in abbreviated new drug applications were clarified by the workshop.


Assuntos
Medicamentos Genéricos , Estados Unidos , Humanos , Equivalência Terapêutica , Medicamentos Genéricos/farmacocinética , Simulação por Computador , United States Food and Drug Administration
13.
Int J Pharm ; 642: 123183, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37369289

RESUMO

Identifying critical attributes for complex locally acting ophthalmic formulations and establishing in vitro-in vivo correlations can facilitate selection of appropriate thresholds for formulation changes that reflect lack of impact on in vivo performance. In this study the marketed antiglaucoma product Azopt® (1% brinzolamide suspension) and five other brinzolamide formulations varying in particle size distributions and apparent viscosities were topically administered in rabbits, and their ocular pharmacokinetics was determined in multiple ocular tissues. Statistical evaluation with ANOVA showed no significant differences between the formulations in the peak drug concentration (Cmax) in the aqueous humor and iris-ciliary body. As a post-hoc analysis, the within animal and total variability was determined for Cmax in the aqueous humor and iris-ciliary body. Based on the observed variability, we investigated the sample size needed for two types of study designs to observe statistically significant differences in Cmax. For the sample size calculations, assuming both 25% and 50% true differences in Cmax between two formulations, two study designs were compared: paired-eye dosing design (one formulation in one eye and another formulation in the other eye of the same animal at the same time) versus parallel-group design. The number of rabbits needed in the paired-eye dosing design are much lower than in the parallel-group design. For example, when the true difference in aqueous humor Cmax is 25%, nine rabbits are required in the paired-eye design versus seventy rabbits (35 per treatment) in the parallel-group design to observe a statistically significant difference with a power of 80%. Therefore, the proposed paired-eye dosing design is a viable option for the design of pharmacokinetic studies comparing ophthalmic products to determine the impact of formulation differences.


Assuntos
Olho , Sulfonamidas , Animais , Coelhos , Suspensões , Tamanho da Amostra , Humor Aquoso , Soluções Oftálmicas
14.
Front Oncol ; 12: 840855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372024

RESUMO

Objective: Current pharmacological intervention for the cancer-related pain is still limited. The aim of this study was to explore whether repetitive transcranial magnetic stimulation (rTMS) could be an effective adjuvant therapy to reduce pain in patients with advanced non-small cell lung cancer (NSCLC). Methods: This was a randomized, sham-controlled study. A total of 41 advanced NSCLC patients with uncontrolled pain (score≥4 on pain intensity assessed with an 11-point numeric rating scale) were randomized to receive active (10 Hz, 2000 stimuli) (n = 20) or sham rTMS (n = 20) for 3 weeks. Pain was the primary outcome and was assessed with the Numeric Rating Scale (NRS). Secondary outcomes were oral morphine equivalent (OME) daily dose, quality of life (WHO Quality of Life-BREF), and psychological distress (the Hospital Depression and Anxiety Scale). All outcomes were measured at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. Results: The pain intensity in both groups decreased gradually from day 3 and decreased to the lowest at the week 3, with a decrease rate of 41.09% in the rTMS group and 23.23% in the sham group. The NRS score of the rTMS group was significantly lower than that of the sham group on the week 2 (p < 0.001, Cohen's d =1.135) and week 3 (p=0.017, Cohen's d = -0.822). The OME daily dose, physiology and psychology domains of WHOQOL-BREF scores, as well as the HAM-A and HAM-D scores all were significantly improved at week 3 in rTMS group. Conclusion: Advanced NSCL patients with cancer pain treated with rTMS showed better greater pain relief, lower dosage of opioid, and better mood states and quality of life. rTMS is expected to be a new effective adjuvant therapy for cancer pain in advanced NSCLC patients.

15.
Biochemistry ; 50(23): 5220-35, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21500788

RESUMO

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal-mode assignments, we conducted NRVS with D14C ferredoxin samples with (36)S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains, (Ph(4)P)(2)[Fe(4)S(4)Cl(4)]. Several distinct regions of NRVS intensity are identified, ranging from "protein" and torsional modes below 100 cm(-1), through bending and breathing modes near 150 cm(-1), to strong bands from Fe-S stretching modes between 250 and ∼400 cm(-1). The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra. The (57)Fe partial vibrational densities of states for the oxidized samples were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low-frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe(4)S(4)](2+/+) redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.


Assuntos
Proteínas de Bactérias/química , Ferredoxinas/química , Ferro/química , Pyrococcus furiosus/metabolismo , Enxofre/química , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Ferro/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Análise Espectral Raman , Enxofre/metabolismo
16.
J Chem Phys ; 134(13): 134501, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21476758

RESUMO

Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical∕molecular mechanical (QM∕MM) calculations at the MP2∕aug-cc-pVQZ level on a B3LYP∕aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM∕MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM∕MM multipoles is much closer than that from the site models to the potential from the QM∕MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment.


Assuntos
Água/química , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Método de Monte Carlo , Teoria Quântica , Eletricidade Estática
17.
Eur J Drug Metab Pharmacokinet ; 46(1): 41-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064292

RESUMO

BACKGROUND AND OBJECTIVES: Proton pump inhibitors (PPIs) can affect the intragastric release of other drugs from their dosage forms by elevating the gastric pH. They may also influence drug absorption and metabolism by interacting with P-glycoprotein or with the cytochrome P450 (CYP) enzyme system. Nifedipine is a Biopharmaceutics Classification System (BCS) class II drug with low solubility across physiologic pH and high permeability. Previous studies have demonstrated that drug-drug interaction (DDI) existed between omeprazole and nifedipine with significantly increased systemic exposure of nifedipine in subjects after pre-treatment for 7 days with omeprazole compared to the subjects without omeprazole treatment. It was shown that omeprazole not only induced an increase in intragastric pH, but also inhibited the CYP3A4 activity, while CYP3A4-mediated oxidation is the main metabolic pathway of nifedipine. The purpose of this study is to apply a physiologically based pharmacokinetic (PBPK) modeling approach to investigate the DDI mechanism for an immediate release formulation of nifedipine with omeprazole. METHODS: A previously published model for omeprazole was modified to integrate metabolites and to update CYP inhibition based on the most updated published in vitro data. We simulated the nifedipine pharmacokinetics in healthy subjects with or without the multiple-dose pretreatment of omeprazole (20 mg) following oral administrations of immediate-release (IR) (10 mg) nifedipine. Nifedipine solubility at different pHs was used to simulate the nifedipine pharmacokinetics for both clinical arms. Multiple sensitivity analyses were performed to understand the impact of gastric pH and the CYP3A4-mediated gut and liver first pass metabolism on the overall nifedipine pharmacokinetics. RESULTS: The developed PBPK model properly described the pharmacokinetics of nifedipine and predicted the inhibitory effect of multiple-dose omeprazole on CYP3A4 activity. With the incorporation of the physiologic effect of omeprazole on both gastric pH and CYP3A4 to the PBPK model, the verified PBPK model allows evaluating the impact of the increase in gastric pH and/or CYP3A4 inhibition. The simulated results show that the nifedipine metabolic inhibition by omeprazole may play an important role in the DDI between nifedipine and omeprazole for IR nifedipine formulation. CONCLUSION: The developed full PBPK model with the capability to simulate DDI by considering gastric pH change and metabolic inhibition provides a mechanistic understanding of the observed DDI of nifedipine with a PPI, omeprazole.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacocinética , Interações Medicamentosas/fisiologia , Modelos Biológicos , Nifedipino/farmacocinética , Omeprazol/farmacocinética , Inibidores da Bomba de Prótons/farmacocinética , Bloqueadores dos Canais de Cálcio/farmacocinética , Humanos
18.
Front Neurosci ; 15: 640255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897353

RESUMO

Although spinal cord injury (SCI) is the main cause of disability worldwide, there is still no definite and effective treatment method for this condition. Our previous clinical trials confirmed that the increased excitability of the motor cortex was related to the functional prognosis of patients with SCI. However, it remains unclear which cell types in the motor cortex lead to the later functional recovery. Herein, we applied optogenetic technology to selectively activate glutamate neurons in the primary motor cortex and explore whether activation of glutamate neurons in the primary motor cortex can promote functional recovery after SCI in rats and the preliminary neural mechanisms involved. Our results showed that the activation of glutamate neurons in the motor cortex could significantly improve the motor function scores in rats, effectively shorten the incubation period of motor evoked potentials and increase motor potentials' amplitude. In addition, hematoxylin-eosin staining and nerve fiber staining at the injured site showed that accurate activation of the primary motor cortex could effectively promote tissue recovery and neurofilament growth (GAP-43, NF) at the injured site of the spinal cord, while the content of some growth-related proteins (BDNF, NGF) at the injured site increased. These results suggested that selective activation of glutamate neurons in the primary motor cortex can promote functional recovery after SCI and may be of great significance for understanding the neural cell mechanism underlying functional recovery induced by motor cortex stimulation.

19.
Biophys J ; 98(4): 560-8, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20159152

RESUMO

Based on the crystal structures, three possible sequence determinants have been suggested as the cause of a 285 mV increase in reduction potential of the rubredoxin domain of rubrerythrin over rubredoxin by modulating the polar environment around the redox site. Here, electrostatic calculations of crystal structures of rubredoxin and rubrerythrin and molecular dynamics simulations of rubredoxin wild-type and mutants are used to elucidate the contributions to the increased reduction potential. Asn(160) and His(179) in rubrerythrin versus valines in rubredoxins are predicted to be the major contributors, as the polar side chains contribute significantly to the electrostatic potential in the redox site region. The mutant simulations show both side chains rotating on a nanosecond timescale between two conformations with different electrostatic contributions. Reduction also causes a change in the reduction energy that is consistent with a linear response due to the interesting mechanism of shifting the relative populations of the two conformations. In addition to this, a simulation of a triple mutant indicates the side-chain rotations are approximately anticorrelated so whereas one is in the high potential conformation, the other is in the low potential conformation. However, Ala(176) in rubrerythrin versus a leucine in rubredoxin is not predicted to be a large contributor, because the solvent accessibility increases only slightly in mutant simulations and because it is buried in the interface of the rubrerythrin homodimer.


Assuntos
Hemeritrina/química , Rubredoxinas/química , Sequência de Aminoácidos , Clostridium , Cristalografia por Raios X , Desulfovibrio vulgaris , Hemeritrina/genética , Hemeritrina/metabolismo , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Rubredoxinas/genética , Rubredoxinas/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Fatores de Tempo
20.
Chem Phys Lett ; 491(4-6): 218-223, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21072255

RESUMO

Water structure around sugars modeled by partial charges is compared for soft-sticky dipole-quadrupole-octupole (SSDQO), a fast single-site multipole model, and commonly used multi-site models in Monte Carlo simulations. Radial distribution functions and coordination numbers of all the models indicate similar hydration by hydrogen-bond donor and acceptor waters. However, the new optimized SSDQO1 parameters as well as TIP4P-Ew and TIP5P predict a "lone-pair" orientation for the water accepting the sugar hydroxyl hydrogen bond that is more consistent with the limited experimental data than the "dipole" orientation in SPC/E, which has important implications for studies of the cryoprotectant properties of sugars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA