Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nature ; 614(7946): 95-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36631612

RESUMO

Carbon structures with covalent bonds connecting C60 molecules have been reported1-3, but their production methods typically result in very small amounts of sample, which restrict the detailed characterization and exploration necessary for potential applications. We report the gram-scale preparation of a new type of carbon, long-range ordered porous carbon (LOPC), from C60 powder catalysed by α-Li3N at ambient pressure. LOPC consists of connected broken C60 cages that maintain long-range periodicity, and has been characterized by X-ray diffraction, Raman spectroscopy, magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, aberration-corrected transmission electron microscopy and neutron scattering. Numerical simulations based on a neural network show that LOPC is a metastable structure produced during the transformation from fullerene-type to graphene-type carbons. At a lower temperature, shorter annealing time or by using less α-Li3N, a well-known polymerized C60 crystal forms owing to the electron transfer from α-Li3N to C60. The carbon K-edge near-edge X-ray absorption fine structure shows a higher degree of delocalization of electrons in LOPC than in C60(s). The electrical conductivity is 1.17 × 10-2 S cm-1 at room temperature, and conduction at T < 30 K appears to result from a combination of metallic-like transport over short distances punctuated by carrier hopping. The preparation of LOPC enables the discovery of other crystalline carbons starting from C60(s).

2.
Nano Lett ; 24(13): 4038-4043, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511834

RESUMO

Specific heat capacity is one of the most fundamental thermodynamic properties of materials. In this work, we measured the specific heat capacity of PbSe nanocrystals with diameters ranging from 5 to 23 nm, and its value increases significantly from 0.2 to 0.6 J g-1 °C-1. We propose a mass assignment model to describe the specific heat capacity of nanocrystals, which divides it into four parts: electron, inner, surface, and ligand. By eliminating the contribution of ligand and electron specific heat capacity, the specific heat capacity of the inorganic core is linearly proportional to its surface-to-volume ratio, showing the size dependence. Based on this linear relationship, surface specific heat capacity accounts for 40-60% of the specific heat capacity of nanocrystals with size decreasing. It can be attributed to the uncoordinated surface atoms, which is evidenced by the appearance of extra surface phonons in Raman spectra and ab initio molecular dynamics (AIMD) simulations.

3.
Nano Lett ; 24(9): 2789-2797, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407030

RESUMO

Two-dimensional materials are expected to play an important role in next-generation electronics and optoelectronic devices. Recently, twisted bilayer graphene and transition metal dichalcogenides have attracted significant attention due to their unique physical properties and potential applications. In this study, we describe the use of optical microscopy to collect the color space of chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) and the application of a semantic segmentation convolutional neural network (CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A second CNN model is trained to provide precise predictions on the twist angle of CVD-grown bilayer flakes. This model harnessed a data set comprising over 10,000 synthetic images, encompassing geometries spanning from hexagonal to triangular shapes. Subsequent validation of the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.

4.
Nano Lett ; 23(11): 5342-5349, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37219946

RESUMO

Raman spectroscopy is a powerful technique to probe structural and doping behaviors of two-dimensional (2D) materials. In MoS2, the always coexisting in-plane (E2g1) and out-of-plane (A1g) vibrational modes are used as reliable fingerprints to distinguish the number of layers, strains, and doping levels. In this work, however, we report an abnormal Raman behavior, i.e., the absence of the A1g mode in cetyltrimethylammonium bromide (CTAB)-intercalated MoS2 superlattice. This unusual behavior is quite different from the softening of the A1g mode induced by surface engineering or electric-field gating. Interestingly, under a strong laser illumination, heating, or mechanical indentation, an A1g peak gradually appears, accompanied by the migration of intercalated CTA+ cations. The abnormal Raman behavior is mainly attributed to the constraint of the out-of-plane vibration due to intercalations and resulting severe electron doping. Our work renews the understanding of Raman spectra of 2D semiconducting materials and sheds light on developing next-generation devices with tunable structures.

5.
Nat Mater ; 21(11): 1263-1268, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109673

RESUMO

The production of large-area twisted bilayer graphene (TBG) with controllable angles is a prerequisite for proceeding with its massive applications. However, most of the prevailing strategies to fabricate twisted bilayers face great challenges, where the transfer methods are easily stuck by interfacial contamination, and direct growth methods lack the flexibility in twist-angle design. Here we develop an effective strategy to grow centimetre-scale TBG with arbitrary twist angles (accuracy, <1.0°). The success in accurate angle control is realized by an angle replication from two prerotated single-crystal Cu(111) foils to form a Cu/TBG/Cu sandwich structure, from which the TBG can be isolated by a custom-developed equipotential surface etching process. The accuracy and consistency of the twist angles are unambiguously illustrated by comprehensive characterization techniques, namely, optical spectroscopy, electron microscopy, photoemission spectroscopy and photocurrent spectroscopy. Our work opens an accessible avenue for the designed growth of large-scale two-dimensional twisted bilayers and thus lays the material foundation for the future applications of twistronics at the integration level.

6.
Nano Lett ; 22(13): 5385-5391, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35748677

RESUMO

The multiphonon process plays an essential role in understanding electron-phonon coupling, which significantly influences the optical and transport properties of solids. Multiphonon processes have been observed in many materials, but how to distinguish them directly by their spectral characteristics remains controversial. Here, we report high-order Raman scattering up to 10 orders and hot luminescence involving 11 orders of phonons in Mn-doped ZnO nanowires by selecting the excitation energy. Our results show that the intensity distribution of high-order Raman scattering obeys an exponential decrease as the order number increases, while hot luminescence is fitted with a Poisson distribution with a resonance factor. Their linewidth and frequency can be well explained by two different transition models. Our work provides a paradigm for understanding the multiphonon-involved decay process of an excited state and may inspire studies of the statistical characteristics of excited state decay.

7.
Nano Lett ; 22(17): 7129-7135, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993841

RESUMO

Laser cooling atoms and molecules to ultralow temperatures has produced plenty of opportunities in fundamental physics, precision metrology, and quantum science. Although theoretically proposed over 40 years, the laser cooling of certain lattice vibrations (i.e., phonon) remains a challenge owing to the complexity of solid structures. Here, we demonstrate Raman cooling of a longitudinal optical phonon in two-dimensional semiconductor WS2 by red-detuning excitation at the sideband of the exciton (bound electron-hole pair). Strong coupling between the phonon and exciton and appreciable optomechanical coupling rates provide access to cooling high-frequency phonons that are robust against thermal decoherence even at room temperature. Our experiment opens possibilities of laser cooling and control of individual optical phonon and, eventually, possible cooling of matter in van der Waals semiconductor.

8.
Nano Lett ; 22(22): 9054-9061, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36321634

RESUMO

In high-performance flexible and stretchable electronic devices, conventional inorganic semiconductors made of rigid and brittle materials typically need to be configured into geometrically deformable formats and integrated with elastomeric substrates, which leads to challenges in scaling down device dimensions and complexities in device fabrication and integration. Here we report the extraordinary mechanical properties of the newly discovered inorganic double helical semiconductor tin indium phosphate. This spiral-shape double helical crystal shows the lowest Young's modulus (13.6 GPa) among all known stable inorganic materials. The large elastic (>27%) and plastic (>60%) bending strains are also observed and attributed to the easy slippage between neighboring double helices that are coupled through van der Waals interactions, leading to the high flexibility and deformability among known semiconducting materials. The results advance the fundamental understanding of the unique polymer-like mechanical properties and lay the foundation for their potential applications in flexible electronics and nanomechanics disciplines.


Assuntos
Polímeros , Semicondutores , Polímeros/química , Eletrônica , Módulo de Elasticidade , Elasticidade
9.
Nano Lett ; 22(23): 9365-9371, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36399405

RESUMO

The lead halide perovskite has become a promising candidate for the study of exciton polaritons due to their excellent optical properties. Here, both experimental and simulated results confirm the existence of two kinds of Fabry-Pérot microcavities in a single CsPbBr3 microwire with an isosceles right triangle cross section, and we experimentally demonstrate that confined photons in a straight and a folded Fabry-Pérot microcavity are strongly coupled with excitons to form exciton polaritons. Furthermore, we reveal the polarization characteristic and double-cavity modulation of exciton polaritons emission by polarization-resolved fluorescence spectroscopy. Our results not only prove that the modulation of exciton polaritons emission can occur in this simple double-cavity system but also provide a possibility to develop related polariton devices.

10.
Nano Lett ; 22(3): 1331-1337, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073101

RESUMO

Quantum emitters are needed for a myriad of applications ranging from quantum sensing to quantum computing. Hexagonal boron nitride (hBN) quantum emitters are one of the most promising solid-state platforms to date due to their high brightness and stability and the possibility of a spin-photon interface. However, the understanding of the physical origins of the single-photon emitters (SPEs) is still limited. Here we report dense SPEs in hBN across the entire visible spectrum and present evidence that most of these SPEs can be well explained by donor-acceptor pairs (DAPs). On the basis of the DAP transition generation mechanism, we calculated their wavelength fingerprint, matching well with the experimentally observed photoluminescence spectrum. Our work serves as a step forward for the physical understanding of SPEs in hBN and their applications in quantum technologies.

11.
Nano Lett ; 22(3): 1233-1241, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35041438

RESUMO

Materials with a quasi-one-dimensional stripy magnetic order often exhibit low crystal and magnetic symmetries, thus allowing the presence of various energy coupling terms and giving rise to macroscopic interplay between spin, charge, and phonon. In this work, we performed optical, electrical and magnetic characterizations combined with first-principles calculations on a van der Waals antiferromagnetic insulator chromium oxychloride (CrOCl). We detected the subtle phase transition behaviors of exfoliated CrOCl under varying temperature and magnetic field and clarified its controversial spin structures. We found that the antiferromagnetism and its air stability persist down to few-layer samples, making it a promising candidate for future 2D spintronic devices. Additionally, we verified the magnetoelastic coupling effect in CrOCl, allowing for the potential manipulation of the magnetic states via electric field or strain. These virtues of CrOCl provide us with an ideal platform for fundamental research on spin-charge, spin-phonon coupling, and spin-interactions.

12.
J Am Chem Soc ; 144(43): 19758-19769, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36257067

RESUMO

Rare earth chalcogenides (RECs) with novel luminescence and magnetic properties offer fascinating opportunities for fundamental research and applications. However, controllable synthesis of RECs down to the two-dimensional (2D) limit still has a great challenge. Herein, 2D wedge-shaped ferromagnetic EuS single crystals are successfully synthesized via a facile molten-salt-assisted chemical vapor deposition method on sapphire. Based on the theoretical simulations and experimental measurements, the mechanisms of aligned growth and wedge-shaped growth are systematically proposed. The wedge-shaped growth is driven by a dual-interaction mechanism, where the coupling between EuS and the substrate steps impedes the lateral growth, and the strong bonding of nonlayered EuS itself facilitates the vertical growth. Through temperature-dependent Raman and photoluminescence characterization, the nanoflakes show a large Raman temperature coefficient of -0.030 cm-1 K-1 and uncommon increasing band gap with temperature. More importantly, by low-temperature magnetic force microscopy characterization, thickness variation of the magnetic signal is revealed within one sample, indicating the great potential of the wedge-shaped nanoflake to serve as a platform for highly efficient investigation of thickness-dependent magnetic properties. This work sheds new light on 2D RECs and will offer a deep understanding of 2D wedge-shaped materials.

13.
J Am Chem Soc ; 144(41): 18887-18895, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194558

RESUMO

The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of Tc up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.

14.
Small ; 18(15): e2106759, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218284

RESUMO

The soft hybrid organic-inorganic structure of two-dimensional layered perovskites (2DLPs) enables broadband emission at room temperature from a single material, which makes 2DLPs promising sources for solid-state white lighting, yet with low efficiency. The underlying photophysics involves self-trapping of excitons favored by distortions of the inorganic lattice and coupling to phonons, where the mechanism is still under debate. 2DLPs with different organic moieties and emission ranging from self-trapped exciton (STE)-dominated white light to blue band-edge photoluminescence are investigated. Detailed insights into the directional symmetries of phonon modes are gained using angle-resolved polarized Raman spectroscopy and are correlated to the temperature-dependence of the STE emission. It is demonstrated that weak STE bands at low-temperature are linked to in-plane phonons, and efficient room-temperature STE emission to more complex coupling to several phonon modes with out-of-plane components. Thereby, a unique view is provided into the lattice deformations and recombination dynamics that are key to designing more efficient materials.

15.
Nat Mater ; 20(8): 1100-1105, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33753933

RESUMO

In moiré crystals formed by stacking van der Waals materials, surprisingly diverse correlated electronic phases and optical properties can be realized by a subtle change in the twist angle. Here, we discover that phonon spectra are also renormalized in MoS2 twisted bilayers, adding an insight to moiré physics. Over a range of small twist angles, the phonon spectra evolve rapidly owing to ultra-strong coupling between different phonon modes and atomic reconstructions of the moiré pattern. We develop a low-energy continuum model for phonons that overcomes the outstanding challenge of calculating the properties of large moiré supercells and successfully captures the essential experimental observations. Remarkably, simple optical spectroscopy experiments can provide information on strain and lattice distortions in moiré crystals with nanometre-size supercells. The model promotes a comprehensive and unified understanding of the structural, optical and electronic properties of moiré superlattices.

16.
BMC Pregnancy Childbirth ; 22(1): 497, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715784

RESUMO

BACKGROUND: Peripartum cardiomyopathy (PPCM) is defined as an idiopathic cardiomyopathy occurring in the last month of pregnancy or the first 6 months postpartum without an identifiable cause. PPCM is suspected to be triggered by the generation of a cardiotoxic fragment of prolactin and the secretion of a potent antiangiogenic protein from the placental, but no single factor has been identified or defined as the underlying cause of the disease. Influenza virus can cause PPCM through immune-mediated response induced by proinflammatory cytokines from host immunity and endothelial cell dysfunction. We report a case in a parturient woman undergoing a cesarean delivery, who had influenza A pneumonia and PPCM. CASE PRESENTATION: A parturient woman at 40 weeks and 1 day of gestation who had experienced gestational hypertension accompanied by pulmonary edema developed hypotension after undergoing an emergency cesarean delivery. An elevation of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) was noted, and echocardiography revealed a left ventricular ejection fraction of 20%. She underwent a nasopharyngeal swab test, in which influenza A antigen was positive. She was diagnosed as having PPCM and received anti-viral treatment. After antiviral treatment, hemodynamic dysfunction stabilized. We present and discuss the details of this event. CONCLUSION: PPCM is a heart disease that is often overlooked by medical personnel. Rapid swab tests, serum creatine kinase measurement, and echocardiography are imperative diagnostic approaches for the timely recognition of virus-associated cardiomyopathy in peripartum women with influenza-like disease and worsening dyspnea, especially during the epidemic season. Prompt antiviral treatment should be considered, particularly after PPCM is diagnosed.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Vírus da Influenza A , Influenza Humana , Pneumonia , Complicações Cardiovasculares na Gravidez , Transtornos Puerperais , Antivirais/uso terapêutico , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Feminino , Humanos , Influenza Humana/complicações , Influenza Humana/diagnóstico , Influenza Humana/tratamento farmacológico , Período Periparto , Placenta , Gravidez , Complicações Cardiovasculares na Gravidez/diagnóstico , Transtornos Puerperais/diagnóstico , Transtornos Puerperais/tratamento farmacológico , Transtornos Puerperais/etiologia , Volume Sistólico , Função Ventricular Esquerda
17.
Nano Lett ; 21(13): 5648-5654, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34165978

RESUMO

Among many phase-changing materials, graphite is probably the most studied and interesting: the rhombohedral (3R) and hexagonal (2H) phases exhibit dramatically different electronic properties. However, up to now the only way to promote 3R to 2H phase transition is through exposure to elevated temperatures (above 1000 °C); thus, it is not feasible for modern technology. In this work, we demonstrate that 3R to 2H phase transition can be promoted by changing the charged state of 3D graphite, which promotes the repulsion between the layers and significantly reduces the energy barrier between the 3R and 2H phases. In particular, we show that charge transfer from lithium nitride (α-Li3N) to graphite can lower the transition temperature down to 350 °C. The proposed interlayer slipping model potentially offers the control over topological states at the interfaces between different phases, making this system even more attractive for future electronic applications.

18.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430870

RESUMO

Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-ß are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-ß produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.


Assuntos
COVID-19 , Interferon Tipo I , Doenças do Sistema Nervoso , Humanos , Doenças Neuroinflamatórias , Doenças do Sistema Nervoso/tratamento farmacológico , Interferon-alfa , Interferon beta , Dor , Síndrome de COVID-19 Pós-Aguda
19.
Mol Pain ; 17: 17448069211045211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34517736

RESUMO

Interferons (IFNs) are cytokines secreted by infected cells that can interfere with viral replication. Besides activating antiviral defenses, type I IFNs also exhibit diverse biological functions. IFN-ß has been shown to have a protective effect against neurotoxic and inflammatory insults on neurons. Therefore, we aimed to investigate the possible role of IFN-ß in reducing mechanical allodynia caused by Complete Freund's Adjuvant (CFA) injection in rats. We assessed the antinociceptive effect of intrathecal IFN-ß in naïve rats and the rats with CFA-induced inflammatory pain. After the behavioral test, the spinal cords of the rats were harvested for western blot and immunohistochemical double staining. We found that intrathecal administration of IFN-ß in naïve rats can significantly increase the paw withdrawal threshold and paw withdrawal latency. Further, the intrathecal injection of a neutralizing IFN-ß antibody can reduce the paw withdrawal threshold and paw withdrawal latency, suggesting that IFN-ß is produced in the spinal cord in normal conditions and serves as a tonic inhibitor of pain. In addition, intrathecal injection of IFN-ß at dosages from 1000 U to 10000 U demonstrates a significant transient dose-dependent inhibition of CFA-induced inflammatory pain. This analgesic effect is reversed by intrathecal naloxone, suggesting that IFN-ß produces an analgesic effect through central opioid receptor-mediated signaling. Increased expression of phospho-µ-opioid receptors after IFN-ß injection was observed on western blot, and immunohistochemical staining showed that µ-opioids co-localized with IFN-α/ßR in the dorsal horn of the spinal cord. The findings of this study demonstrate that the analgesic effect of IFN-ß is through µ-opioid receptors activation in spial cord.


Assuntos
Analgésicos Opioides/farmacologia , Inflamação/tratamento farmacológico , Interferon beta/metabolismo , Dor/tratamento farmacológico , Animais , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Injeções Espinhais/métodos , Masculino , Dor/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
Nano Lett ; 20(5): 3747-3753, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32242668

RESUMO

A comprehensive understanding of the ultrafast electron dynamics in two-dimensional transition metal dichalcogenides (TMDs) is necessary for their applications in optoelectronic devices. In this work, we contribute a study of ultrafast electron cooling and decay dynamics in the supported and suspended monolayer WS2 by time- and energy-resolved photoemission electron microscopy (PEEM). Electron cooling in the Q valley of the conduction band is clearly resolved in energy and time, on a time scale of 0.3 ps. Electron decay is mainly via a defect trapping process on a time scale of several picoseconds. We observed that the trap states can be produced and increased by laser illumination under an ultrahigh vacuum, and the higher local optical-field intensity led to the faster increase of trap states. The enhanced defect trapping could significantly modify the carrier dynamics and should be paid attention to in photoemission experiments for two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA