Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Cancer ; 22(1): 4, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624516

RESUMO

BACKGROUND: Metastatic colonization is one of the critical steps in tumor metastasis. A pre-metastatic niche is required for metastatic colonization and is determined by tumor-stroma interactions, yet the mechanistic underpinnings remain incompletely understood. METHODS: PCR-based miRNome profiling, qPCR, immunofluorescent analyses evaluated the expression of exosomal miR-141 and cell-to-cell communication. LC-MS/MS proteomic profiling and Dual-Luciferase analyses identified YAP1 as the direct target of miR-141. Human cytokine profiling, ChIP, luciferase reporter assays, and subcellular fractionation analyses confirmed YAP1 in modulating GROα production. A series of in vitro tumorigenic assays, an ex vivo model and Yap1 stromal conditional knockout (cKO) mouse model demonstrated the roles of miR-141/YAP1/GROα/CXCR1/2 signaling cascade. RNAi, CRISPR/Cas9 and CRISPRi systems were used for gene silencing. Blood sera, OvCa tumor tissue samples, and tissue array were included for clinical correlations. RESULTS: Hsa-miR-141-3p (miR-141), an exosomal miRNA, is highly secreted by ovarian cancer cells and reprograms stromal fibroblasts into proinflammatory cancer-associated fibroblasts (CAFs), facilitating metastatic colonization. A mechanistic study showed that miR-141 targeted YAP1, a critical effector of the Hippo pathway, reducing the nuclear YAP1/TAZ ratio and enhancing GROα production from stromal fibroblasts. Stromal-specific knockout (cKO) of Yap1 in murine models shaped the GROα-enriched microenvironment, facilitating in vivo tumor colonization, but this effect was reversed after Cxcr1/2 depletion in OvCa cells. The YAP1/GROα correlation was demonstrated in clinical samples, highlighting the clinical relevance of this research and providing a potential therapeutic intervention for impeding premetastatic niche formation and metastatic progression of ovarian cancers. CONCLUSIONS: This study uncovers miR-141 as an OvCa-derived exosomal microRNA mediating the tumor-stroma interactions and the formation of tumor-promoting stromal niche through activating YAP1/GROα/CXCRs signaling cascade, providing new insight into therapy for OvCa patients with peritoneal metastases.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Neoplasias Ovarianas/genética , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Microambiente Tumoral
2.
Oncotarget ; 5(17): 7549-62, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25277189

RESUMO

Transforming growth factor (TGF)-ß-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA